{"title":"Applications and Evaluation of In-memory MapReduce","authors":"Kim-Thomas Rehmann, M. Schöttner","doi":"10.1109/CloudCom.2011.19","DOIUrl":null,"url":null,"abstract":"In-memory storage techniques provide cloud applications with cheap, fast and large-scale RAM-based storage. By replicating data and providing adequate consistency control mechanisms, in-memory storage can simplify the design and implementation of highly scalable distributed applications. We argue that in-memory storage can increase the flexibility of the MapReduce parallel programming model without requiring additional communication facilities to propagate data updates. In this paper, we present several applications for our in-memory MapReduce framework from diverse problem domains including iterative and on-line data processing.","PeriodicalId":427190,"journal":{"name":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In-memory storage techniques provide cloud applications with cheap, fast and large-scale RAM-based storage. By replicating data and providing adequate consistency control mechanisms, in-memory storage can simplify the design and implementation of highly scalable distributed applications. We argue that in-memory storage can increase the flexibility of the MapReduce parallel programming model without requiring additional communication facilities to propagate data updates. In this paper, we present several applications for our in-memory MapReduce framework from diverse problem domains including iterative and on-line data processing.