Cries and Whispers in Wind-Tree Forests

What's Next? Pub Date : 2015-02-23 DOI:10.2307/j.ctvthhdvv.8
V. Delecroix, A. Zorich
{"title":"Cries and Whispers in Wind-Tree Forests","authors":"V. Delecroix, A. Zorich","doi":"10.2307/j.ctvthhdvv.8","DOIUrl":null,"url":null,"abstract":"We study billiard in the plane endowed with symmetric \\$\\mathbb{Z}^2\\$-periodic obstacles of a right-angled polygonal shape. One of our main interests is the dependence of the diffusion rate of the billiard on the shape of the obstacle. We prove, in particular, that when the number of angles of a symmetric connected obstacle grows, the diffusion rate tends to zero, thus answering a question of J.-C. Yoccoz. \nOur results are based on computation of Lyapunov exponents of the Hodge bundle over hyperelliptic loci in the moduli spaces of quadratic differentials, which represents independent interest. In particular, we compute the exact value of the Lyapunov exponent \\$\\lambda^+_1\\$ for all elliptic loci of quadratic differentials with simple zeroes and poles.","PeriodicalId":404905,"journal":{"name":"What's Next?","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"What's Next?","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvthhdvv.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We study billiard in the plane endowed with symmetric \$\mathbb{Z}^2\$-periodic obstacles of a right-angled polygonal shape. One of our main interests is the dependence of the diffusion rate of the billiard on the shape of the obstacle. We prove, in particular, that when the number of angles of a symmetric connected obstacle grows, the diffusion rate tends to zero, thus answering a question of J.-C. Yoccoz. Our results are based on computation of Lyapunov exponents of the Hodge bundle over hyperelliptic loci in the moduli spaces of quadratic differentials, which represents independent interest. In particular, we compute the exact value of the Lyapunov exponent \$\lambda^+_1\$ for all elliptic loci of quadratic differentials with simple zeroes and poles.
风树林里的呼喊和低语
我们研究了具有对称\$\mathbb{Z}^2\$-直角多边形周期障碍物平面上的台球运动。我们的主要兴趣之一是台球的扩散速率与障碍物形状的依赖关系。我们特别证明了当对称连接障碍物的角度数增加时,扩散速率趋于零,从而回答了j . c .问题。Yoccoz。我们的结果是基于二次微分模空间中超椭圆轨迹上的Hodge束的Lyapunov指数的计算,它代表了独立的兴趣。特别地,我们计算了所有具有简单零点和极点的二次微分的椭圆轨迹的Lyapunov指数的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信