Why does this Entity matter?: Support Passage Retrieval for Entity Retrieval

Shubham Chatterjee, Laura Dietz
{"title":"Why does this Entity matter?: Support Passage Retrieval for Entity Retrieval","authors":"Shubham Chatterjee, Laura Dietz","doi":"10.1145/3341981.3344243","DOIUrl":null,"url":null,"abstract":"Our goal is to complement an entity ranking with human-readable explanations of how those retrieved entities are connected to the information need. While related to the problem of support passage retrieval, in this paper, we explore two underutilized indicators of relevance: contextual entities and entity salience. The effectiveness of the indicators are studied within a supervised learning-to-rank framework on a dataset from TREC Complex Answer Retrieval. We find that salience is a useful indicator, but it is often not applicable. In contrast, although performance improvements are obtained by using contextual entities, using contextual words still outperforms contextual entities.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Our goal is to complement an entity ranking with human-readable explanations of how those retrieved entities are connected to the information need. While related to the problem of support passage retrieval, in this paper, we explore two underutilized indicators of relevance: contextual entities and entity salience. The effectiveness of the indicators are studied within a supervised learning-to-rank framework on a dataset from TREC Complex Answer Retrieval. We find that salience is a useful indicator, but it is often not applicable. In contrast, although performance improvements are obtained by using contextual entities, using contextual words still outperforms contextual entities.
为什么这个实体很重要?:支持实体检索的通道检索
我们的目标是用人类可读的解释来补充实体排名,说明这些检索到的实体是如何连接到信息需求的。在本文中,我们探讨了两个未被充分利用的相关性指标:上下文实体和实体显著性。在TREC复杂答案检索数据集的监督学习排序框架内研究了指标的有效性。我们发现显著性是一个有用的指标,但它往往不适用。相比之下,尽管使用上下文实体可以提高性能,但使用上下文词的性能仍然优于上下文实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信