{"title":"On Fuzzy Orders and Metrics","authors":"Vinayak E. Nikumbh","doi":"10.18052/WWW.SCIPRESS.COM/BSMASS.10.48","DOIUrl":null,"url":null,"abstract":"In this paper we present results regarding fixed point theory using notion of fuzzy orders.We propose an approach based on quasi metrics which in a way unifies the fixed point theory for ordered sets and metric spaces. is a map. A solution of such fixed point equations,when one exists,often has to be obtained by process of successive approximations.Order theory plays a role when X carries an order and when solution can be realized as joint of elements which approximates it. At some instances we find that fixed point theorems for ordered sets appear to be insufficient . In such cases , it is helpful to apply fixed point techniques in metric spaces. In this paper give some results in this direction. By using the notion of quasi metric spaces we prove a theorem simultaneously generalizing fixed point theorems for ordered structures and metric spaces.All results are interpreted in terms of fuzzy set theory.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.10.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we present results regarding fixed point theory using notion of fuzzy orders.We propose an approach based on quasi metrics which in a way unifies the fixed point theory for ordered sets and metric spaces. is a map. A solution of such fixed point equations,when one exists,often has to be obtained by process of successive approximations.Order theory plays a role when X carries an order and when solution can be realized as joint of elements which approximates it. At some instances we find that fixed point theorems for ordered sets appear to be insufficient . In such cases , it is helpful to apply fixed point techniques in metric spaces. In this paper give some results in this direction. By using the notion of quasi metric spaces we prove a theorem simultaneously generalizing fixed point theorems for ordered structures and metric spaces.All results are interpreted in terms of fuzzy set theory.