Agglomerative information bottleneck for speaker diarization of meetings data

Deepu Vijayasenan, F. Valente, H. Bourlard
{"title":"Agglomerative information bottleneck for speaker diarization of meetings data","authors":"Deepu Vijayasenan, F. Valente, H. Bourlard","doi":"10.1109/ASRU.2007.4430119","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the use of agglomerative information bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian mixture models, the proposed algorithm is completely non parametric . Both clustering and model selection issues of non-parametric models are addressed in this work. The proposed algorithm is evaluated on meeting data on the RT06 evaluation data set. The system is able to achieve diarization error rates comparable to state-of-the-art systems at a much lower computational complexity.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

In this paper, we investigate the use of agglomerative information bottleneck (aIB) clustering for the speaker diarization task of meetings data. In contrary to the state-of-the-art diarization systems that models individual speakers with Gaussian mixture models, the proposed algorithm is completely non parametric . Both clustering and model selection issues of non-parametric models are addressed in this work. The proposed algorithm is evaluated on meeting data on the RT06 evaluation data set. The system is able to achieve diarization error rates comparable to state-of-the-art systems at a much lower computational complexity.
会议数据的演讲者划分的聚集性信息瓶颈
在本文中,我们研究了使用聚集信息瓶颈(aIB)聚类来完成会议数据的说话人分类任务。与使用高斯混合模型对单个扬声器进行建模的最先进的拨号系统相反,所提出的算法是完全非参数的。本文讨论了非参数模型的聚类和模型选择问题。在RT06评价数据集中对会议数据进行了评价。该系统能够以更低的计算复杂度实现与最先进系统相当的码化错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信