Properly learning monotone functions via local correction

Jane Lange, R. Rubinfeld, A. Vasilyan
{"title":"Properly learning monotone functions via local correction","authors":"Jane Lange, R. Rubinfeld, A. Vasilyan","doi":"10.1109/FOCS54457.2022.00015","DOIUrl":null,"url":null,"abstract":"We give a $2^{\\tilde{O}(\\sqrt{n}/\\varepsilon)}$-time algorithm for properly learning monotone Boolean functions under the uniform distribution over $\\{0,1\\}^{n}$. Our algorithm is robust to adversarial label noise and has a running time nearly matching that of the state-of-the-art improper learning algorithm of Bshouty and Tamon (JACM 96) and an information-theoretic lower bound of Blais et al (RANDOM ’15). Prior to this work, no proper learning algorithm with running time smaller than $2^{\\Omega(n)}$ was known to exist. The core of our proper learner is a local computation algorithm for sorting binary labels on a poset. Our algorithm is built on a body of work on distributed greedy graph algorithms; specifically we rely on a recent work of Ghaffari (FOCS’22), which gives an efficient algorithm for computing maximal matchings in a graph in the LCA model of Rubinfeld et al and Alon et al (ICS’II, SODA’12). The applications of our local sorting algorithm extend beyond learning on the Boolean cube: we also give a tolerant tester for Boolean functions over general posets that distinguishes functions that are $\\varepsilon$/3-close to monotone from those that are $\\varepsilon-$far. Previous tolerant testers for the Boolean cube only distinguished between $\\varepsilon/\\Omega(\\sqrt{n}$)-close and $\\varepsilon-$far.","PeriodicalId":390222,"journal":{"name":"2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS54457.2022.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We give a $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$-time algorithm for properly learning monotone Boolean functions under the uniform distribution over $\{0,1\}^{n}$. Our algorithm is robust to adversarial label noise and has a running time nearly matching that of the state-of-the-art improper learning algorithm of Bshouty and Tamon (JACM 96) and an information-theoretic lower bound of Blais et al (RANDOM ’15). Prior to this work, no proper learning algorithm with running time smaller than $2^{\Omega(n)}$ was known to exist. The core of our proper learner is a local computation algorithm for sorting binary labels on a poset. Our algorithm is built on a body of work on distributed greedy graph algorithms; specifically we rely on a recent work of Ghaffari (FOCS’22), which gives an efficient algorithm for computing maximal matchings in a graph in the LCA model of Rubinfeld et al and Alon et al (ICS’II, SODA’12). The applications of our local sorting algorithm extend beyond learning on the Boolean cube: we also give a tolerant tester for Boolean functions over general posets that distinguishes functions that are $\varepsilon$/3-close to monotone from those that are $\varepsilon-$far. Previous tolerant testers for the Boolean cube only distinguished between $\varepsilon/\Omega(\sqrt{n}$)-close and $\varepsilon-$far.
通过局部校正正确学习单调函数
给出了一种$2^{\tilde{O}(\sqrt{n}/\varepsilon)}$时间算法,用于在$\{0,1\}^{n}$上均匀分布下正确学习单调布尔函数。我们的算法对对抗标签噪声具有鲁棒性,其运行时间几乎与Bshouty和Tamon (JACM 96)的最先进的不正确学习算法和Blais等(RANDOM ' 15)的信息论下界相匹配。在此工作之前,还没有发现运行时间小于$2^{\Omega(n)}$的合适的学习算法。适当学习器的核心是一种局部计算算法,用于对偏序集上的二元标签进行排序。我们的算法建立在分布式贪婪图算法的基础上;具体来说,我们依赖于Ghaffari最近的一项工作(FOCS ' 22),该工作给出了一种有效的算法,用于在Rubinfeld等人和Alon等人(ICS, SODA ' 12)的LCA模型中计算图中的最大匹配。我们的局部排序算法的应用扩展到布尔立方体上的学习之外:我们还给出了一般偏序集上布尔函数的容忍度测试,该测试可以区分$\varepsilon$ /3-接近单调的函数和$\varepsilon-$远的函数。以前的布尔多维数据集容忍测试只区分$\varepsilon/\Omega(\sqrt{n}$)-close和$\varepsilon-$ - far。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信