Rainfall Estimation Using Neuron-Adaptive Higher Order Neural Networks

Ming Zhang
{"title":"Rainfall Estimation Using Neuron-Adaptive Higher Order Neural Networks","authors":"Ming Zhang","doi":"10.4018/978-1-61520-711-4.CH007","DOIUrl":null,"url":null,"abstract":"Real-world data is often nonlinear, discontinuous, and may comprise high frequency, multi-polynomial components. Not surprisingly, it is hard to find the best models for modeling such data. Classical neural network models are unable to automatically determine the optimum model and appropriate order for data approximation. In order to solve this problem, neuron-adaptive higher order neural network (NAHONN) models have been introduced. Definitions of one-dimensional, two-dimensional, and n-dimensional NAHONN models are studied. Specialized NAHONN models are also described. NAHONN models are shown to be “open box.” These models are further shown to be capable of automatically finding not only the optimum model but also the appropriate order for high frequency, multi-polynomial, discontinuous data. Rainfall estimation experimental results confirm model convergence. The authors further demonstrate that NAHONN models are capable of modeling satellite data.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61520-711-4.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Real-world data is often nonlinear, discontinuous, and may comprise high frequency, multi-polynomial components. Not surprisingly, it is hard to find the best models for modeling such data. Classical neural network models are unable to automatically determine the optimum model and appropriate order for data approximation. In order to solve this problem, neuron-adaptive higher order neural network (NAHONN) models have been introduced. Definitions of one-dimensional, two-dimensional, and n-dimensional NAHONN models are studied. Specialized NAHONN models are also described. NAHONN models are shown to be “open box.” These models are further shown to be capable of automatically finding not only the optimum model but also the appropriate order for high frequency, multi-polynomial, discontinuous data. Rainfall estimation experimental results confirm model convergence. The authors further demonstrate that NAHONN models are capable of modeling satellite data.
基于神经元自适应高阶神经网络的降雨估计
真实世界的数据通常是非线性的、不连续的,并且可能包含高频的、多多项式的成分。毫不奇怪,很难找到对此类数据建模的最佳模型。经典神经网络模型不能自动确定最优模型和适当的数据逼近顺序。为了解决这一问题,引入了神经元自适应高阶神经网络模型。研究了一维、二维和n维NAHONN模型的定义。还描述了专门的NAHONN模型。NAHONN模型显示为“开框”。这些模型不仅能够自动找到最优模型,而且能够自动找到高频、多多项式、不连续数据的合适阶数。降雨估算实验结果证实了模型的收敛性。作者进一步证明,NAHONN模型能够模拟卫星数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信