{"title":"Towards autonomous airborne mapping of urban environments","authors":"B. Adler, Junhao Xiao","doi":"10.1109/MFI.2012.6343030","DOIUrl":null,"url":null,"abstract":"This work documents our progress on building an unmanned aerial vehicle capable of autonomously mapping urban environments. This includes localization and tracking of the vehicle's pose, fusion of sensor-data from onboard GNSS receivers, IMUs, laserscanners and cameras as well as realtime path-planning and collision-avoidance. Currently, we focus on a physics-based approach to computing waypoints, which are subsequently used to steer the platform in three-dimensional space. Generation of efficient sensor trajectories for maximized information gain operates directly on unorganized point clouds, creating a perfect fit for environment mapping with commonly used LIDAR sensors and time-of-flight cameras. We present the algorithm's application to real sensor-data and analyze its performance in a virtual outdoor scenario.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This work documents our progress on building an unmanned aerial vehicle capable of autonomously mapping urban environments. This includes localization and tracking of the vehicle's pose, fusion of sensor-data from onboard GNSS receivers, IMUs, laserscanners and cameras as well as realtime path-planning and collision-avoidance. Currently, we focus on a physics-based approach to computing waypoints, which are subsequently used to steer the platform in three-dimensional space. Generation of efficient sensor trajectories for maximized information gain operates directly on unorganized point clouds, creating a perfect fit for environment mapping with commonly used LIDAR sensors and time-of-flight cameras. We present the algorithm's application to real sensor-data and analyze its performance in a virtual outdoor scenario.