Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems

Iain Smears, Martin Vohral'ik
{"title":"Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems","authors":"Iain Smears, Martin Vohral'ik","doi":"10.1051/m2an/2020034","DOIUrl":null,"url":null,"abstract":"We consider energy norm a posteriori error analysis of conforming finite element approximations of singularly perturbed reaction-diffusion problems on simplicial meshes in arbitrary space dimension. Using an equilibrated flux reconstruction, the proposed estimator gives a guaranteed global upper bound on the error without unknown constants, and local efficiency robust with respect to the mesh size and singular perturbation parameters. Whereas previous works on equilibrated flux estimators only considered lowest-order finite element approximations and achieved robustness through the use of boundary-layer adapted submeshes or via combination with residual-based estimators, the present methodology applies in a simple way to arbitrary-order approximations and does not request any submesh or estimators combination. The equilibrated flux is obtained via local reaction-diffusion problems with suitable weights (cut-off factors), and the guaranteed upper bound features the same weights. We prove that the inclusion of these weights is not only sufficient but also necessary for robustness of any flux equilibration estimate that does not employ submeshes or estimators combination, which shows that some of the flux equilibrations proposed in the past cannot be robust. To achieve the fully computable upper bound, we derive explicit bounds for some inverse inequality constants on a simplex, which may be of independent interest.","PeriodicalId":283112,"journal":{"name":"arXiv: Numerical Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2020034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We consider energy norm a posteriori error analysis of conforming finite element approximations of singularly perturbed reaction-diffusion problems on simplicial meshes in arbitrary space dimension. Using an equilibrated flux reconstruction, the proposed estimator gives a guaranteed global upper bound on the error without unknown constants, and local efficiency robust with respect to the mesh size and singular perturbation parameters. Whereas previous works on equilibrated flux estimators only considered lowest-order finite element approximations and achieved robustness through the use of boundary-layer adapted submeshes or via combination with residual-based estimators, the present methodology applies in a simple way to arbitrary-order approximations and does not request any submesh or estimators combination. The equilibrated flux is obtained via local reaction-diffusion problems with suitable weights (cut-off factors), and the guaranteed upper bound features the same weights. We prove that the inclusion of these weights is not only sufficient but also necessary for robustness of any flux equilibration estimate that does not employ submeshes or estimators combination, which shows that some of the flux equilibrations proposed in the past cannot be robust. To achieve the fully computable upper bound, we derive explicit bounds for some inverse inequality constants on a simplex, which may be of independent interest.
奇摄动反应扩散问题的简单鲁棒平衡通量后验估计
我们把能量范数看作任意空间维的简单网格上奇异摄动反应扩散问题的合格有限元近似的后验误差分析。通过平衡通量重构,该估计器在不存在未知常数的情况下给出了保证的误差全局上界,并且对网格尺寸和奇异扰动参数具有鲁棒性。鉴于之前关于平衡通量估计器的工作只考虑最低阶有限元近似,并通过使用边界层自适应子网格或通过与残差估计器的组合实现鲁棒性,本方法以一种简单的方式适用于任意阶近似,并且不要求任何子网格或估计器的组合。通过适当权值(截止因子)的局部反应扩散问题得到平衡通量,保证上界具有相同的权值。我们证明了这些权重的包含对于任何不使用子网格或估计器组合的通量平衡估计的鲁棒性不仅是充分的,而且是必要的,这表明过去提出的一些通量平衡不能是鲁棒的。为了获得完全可计算的上界,我们推导了单纯形上一些逆不等式常数的显式上界,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信