Initial performance comparisons for the delta coding algorithm

Keith E. Mathias, L. D. Whitley
{"title":"Initial performance comparisons for the delta coding algorithm","authors":"Keith E. Mathias, L. D. Whitley","doi":"10.1109/ICEC.1994.349911","DOIUrl":null,"url":null,"abstract":"Delta coding is an iterative genetic search strategy that sustains search by periodically re-initializing the population. This helps to avoid premature convergence during genetic search. Delta coding also remaps hyperspace with each iteration in an attempt to locate \"easier\" search spaces with respect to genetic search. Here, the optimization ability of delta coding is compared against the CHC genetic algorithm and a mutation driven stochastic hill-climbing algorithm on a suite of standard genetic algorithm test functions.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Delta coding is an iterative genetic search strategy that sustains search by periodically re-initializing the population. This helps to avoid premature convergence during genetic search. Delta coding also remaps hyperspace with each iteration in an attempt to locate "easier" search spaces with respect to genetic search. Here, the optimization ability of delta coding is compared against the CHC genetic algorithm and a mutation driven stochastic hill-climbing algorithm on a suite of standard genetic algorithm test functions.<>
增量编码算法的初始性能比较
增量编码是一种迭代遗传搜索策略,通过周期性地重新初始化种群来维持搜索。这有助于避免基因搜索过程中的过早收敛。增量编码还在每次迭代中重新映射超空间,以尝试定位相对于遗传搜索的“更容易”的搜索空间。在一组标准的遗传算法测试函数上,比较了delta编码与CHC遗传算法和突变驱动的随机爬坡算法的优化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信