Hybrid sampling for imbalanced data

Chris Seiffert, T. Khoshgoftaar, J. V. Hulse
{"title":"Hybrid sampling for imbalanced data","authors":"Chris Seiffert, T. Khoshgoftaar, J. V. Hulse","doi":"10.3233/ICA-2009-0314","DOIUrl":null,"url":null,"abstract":"Decision tree learning in the presence of imbalanced data is an issue of great practical importance, as such data is ubiquitous in a wide variety of application domains. We propose hybrid data sampling, which uses a combination of two sampling techniques such as random oversampling and random undersampling, to create a balanced dataset for use in the construction of decision tree classification models. The results demonstrate that our methodology is often able to improve the performance of a C4.5 decision tree learner in the context of imbalanced data.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ICA-2009-0314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Decision tree learning in the presence of imbalanced data is an issue of great practical importance, as such data is ubiquitous in a wide variety of application domains. We propose hybrid data sampling, which uses a combination of two sampling techniques such as random oversampling and random undersampling, to create a balanced dataset for use in the construction of decision tree classification models. The results demonstrate that our methodology is often able to improve the performance of a C4.5 decision tree learner in the context of imbalanced data.
不平衡数据的混合采样
存在不平衡数据的决策树学习是一个具有重要实际意义的问题,因为这种数据在各种应用领域中无处不在。我们提出了混合数据采样,它结合了随机过采样和随机欠采样两种采样技术,以创建一个平衡的数据集,用于构建决策树分类模型。结果表明,我们的方法通常能够提高C4.5决策树学习器在不平衡数据背景下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信