Hybrid neural networks architectures for SOC and voltage prediction of new generation batteries storage

G. Capizzi, F. Bonanno, C. Napoli
{"title":"Hybrid neural networks architectures for SOC and voltage prediction of new generation batteries storage","authors":"G. Capizzi, F. Bonanno, C. Napoli","doi":"10.1109/ICCEP.2011.6036301","DOIUrl":null,"url":null,"abstract":"This paper presents some experiences and results obtained about the problem of the SOC and voltage prediction and simulation of new generation batteries. A complex pipelined recurrent neural network (PRNN) was designed for modeling of new generation batteries storage in order to predict the SOC and the terminal voltage. The simulation results are compared with experimental data obtained on commercial batteries.","PeriodicalId":403158,"journal":{"name":"2011 International Conference on Clean Electrical Power (ICCEP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2011.6036301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper presents some experiences and results obtained about the problem of the SOC and voltage prediction and simulation of new generation batteries. A complex pipelined recurrent neural network (PRNN) was designed for modeling of new generation batteries storage in order to predict the SOC and the terminal voltage. The simulation results are compared with experimental data obtained on commercial batteries.
新一代电池储能系统SOC与电压预测的混合神经网络架构
本文介绍了在新一代电池荷电状态和电压预测与仿真问题上取得的一些经验和成果。为预测新一代电池的荷电状态和终端电压,设计了复杂的流水线递归神经网络(PRNN)模型。仿真结果与商用电池的实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信