Unconstrained face verification using fisher vectors computed from frontalized faces

Jun-Cheng Chen, S. Sankaranarayanan, Vishal M. Patel, R. Chellappa
{"title":"Unconstrained face verification using fisher vectors computed from frontalized faces","authors":"Jun-Cheng Chen, S. Sankaranarayanan, Vishal M. Patel, R. Chellappa","doi":"10.1109/BTAS.2015.7358802","DOIUrl":null,"url":null,"abstract":"We present an algorithm for unconstrained face verification using Fisher vectors computed from frontalized off-frontal gallery and probe faces. In the training phase, we use the Labeled Faces in the Wild (LFW) dataset to learn the Fisher vector encoding and the joint Bayesian metric. Given an image containing the query face, we perform face detection and landmark localization followed by frontalization to normalize the effect of pose. We further extract dense SIFT features which are then encoded using the Fisher vector learnt during the training phase. The similarity scores are then computed using the learnt joint Bayesian metric. CMC curves and FAR/TAR numbers calculated for a subset of the IARPA JANUS challenge dataset are presented.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We present an algorithm for unconstrained face verification using Fisher vectors computed from frontalized off-frontal gallery and probe faces. In the training phase, we use the Labeled Faces in the Wild (LFW) dataset to learn the Fisher vector encoding and the joint Bayesian metric. Given an image containing the query face, we perform face detection and landmark localization followed by frontalization to normalize the effect of pose. We further extract dense SIFT features which are then encoded using the Fisher vector learnt during the training phase. The similarity scores are then computed using the learnt joint Bayesian metric. CMC curves and FAR/TAR numbers calculated for a subset of the IARPA JANUS challenge dataset are presented.
基于fisher向量的无约束人脸验证
我们提出了一种基于Fisher向量的无约束人脸验证算法。在训练阶段,我们使用标记的野外面孔(LFW)数据集学习Fisher向量编码和联合贝叶斯度量。给定包含查询人脸的图像,我们进行人脸检测和地标定位,然后进行正面化以标准化姿态的效果。我们进一步提取密集的SIFT特征,然后使用在训练阶段学习的Fisher向量进行编码。然后使用学习到的联合贝叶斯度量来计算相似性分数。给出了针对IARPA JANUS挑战数据集子集计算的CMC曲线和FAR/TAR数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信