Overcoming the memory wall in symbolic algebra: a faster permutation multiplication

SIGSAM Bull. Pub Date : 2002-12-01 DOI:10.1145/641239.641241
G. Cooperman, Xiaoqin Ma
{"title":"Overcoming the memory wall in symbolic algebra: a faster permutation multiplication","authors":"G. Cooperman, Xiaoqin Ma","doi":"10.1145/641239.641241","DOIUrl":null,"url":null,"abstract":"The traditional permutation multiplication algorithm is now limited by memory latency and not by CPU speed. A new cache-aware permutation algorithm speeds up permutation multiplication by a factor of 3.4 on current CPUs. The new algorithm is limited by memory bandwidth, but not by memory latency. Current trends indicate improving memory bandwidth and stagnant memory latency. This makes the new algorithm especially important for future computer architectures. In addition, we believe this \"memory wall\" will soon force a redesign of other common algorithms of symbolic algebra.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/641239.641241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The traditional permutation multiplication algorithm is now limited by memory latency and not by CPU speed. A new cache-aware permutation algorithm speeds up permutation multiplication by a factor of 3.4 on current CPUs. The new algorithm is limited by memory bandwidth, but not by memory latency. Current trends indicate improving memory bandwidth and stagnant memory latency. This makes the new algorithm especially important for future computer architectures. In addition, we believe this "memory wall" will soon force a redesign of other common algorithms of symbolic algebra.
克服符号代数中的内存墙:更快的排列乘法
现在传统的排列乘法算法内存延迟而不是CPU速度的限制。在当前cpu上,新的缓存感知排列算法将排列乘法的速度提高了3.4倍。新算法受内存带宽的限制,但不受内存延迟的限制。当前的趋势表明内存带宽正在改善,内存延迟停滞不前。这使得新算法对未来的计算机体系结构尤为重要。此外,我们相信这堵“内存墙”将很快迫使人们重新设计符号代数的其他常见算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信