Tokenization-based data augmentation for text classification

Patawee Prakrankamanant, E. Chuangsuwanich
{"title":"Tokenization-based data augmentation for text classification","authors":"Patawee Prakrankamanant, E. Chuangsuwanich","doi":"10.1109/jcsse54890.2022.9836268","DOIUrl":null,"url":null,"abstract":"Tokenization is one of the most important data preprocessing steps in the text classification task and also one of the main contributing factors in the model performance. However, getting good tokenizations is non-trivial when the input is noisy, and is especially problematic for languages without an explicit word delimiter such as Thai. Therefore, we propose an alternative data augmentation method to improve the robustness of poor tokenization by using multiple tokenizations. We evaluate the performance of our algorithms on different Thai text classification datasets. The results suggest our augmentation scheme makes the model more robust to tokenization errors and can be combined well with other data augmentation schemes.","PeriodicalId":284735,"journal":{"name":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jcsse54890.2022.9836268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tokenization is one of the most important data preprocessing steps in the text classification task and also one of the main contributing factors in the model performance. However, getting good tokenizations is non-trivial when the input is noisy, and is especially problematic for languages without an explicit word delimiter such as Thai. Therefore, we propose an alternative data augmentation method to improve the robustness of poor tokenization by using multiple tokenizations. We evaluate the performance of our algorithms on different Thai text classification datasets. The results suggest our augmentation scheme makes the model more robust to tokenization errors and can be combined well with other data augmentation schemes.
基于标记的文本分类数据增强
标记化是文本分类任务中最重要的数据预处理步骤之一,也是影响模型性能的主要因素之一。然而,当输入有噪声时,获得良好的标记化是很重要的,对于没有显式的单词分隔符的语言(如泰语)来说,这尤其成问题。因此,我们提出了一种替代的数据增强方法,通过使用多个标记来提高差标记化的鲁棒性。我们在不同的泰语文本分类数据集上评估了算法的性能。结果表明,我们的增强方案使模型对标记错误具有更强的鲁棒性,并且可以与其他数据增强方案很好地结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信