Manipulating behaviors of targeted single cells in vivo by using IR-LEGO

Motoshi Suzuki, Y. Kamei, S. Yuba, S. Takagi
{"title":"Manipulating behaviors of targeted single cells in vivo by using IR-LEGO","authors":"Motoshi Suzuki, Y. Kamei, S. Yuba, S. Takagi","doi":"10.1109/MHS.2009.5351899","DOIUrl":null,"url":null,"abstract":"Methods for turning on/off gene expression at any desired time and place in vivo would be useful for analyzing various biological processes. We have developed a novel microscopic system utilizing an infrared laser, IR-LEGO (infrared-laser evoked gene operator), which is designed to deposit heat locally in living organisms. We have shown that IR-LEGO enables us to induce the heat shock response efficiently in targeted single cells of C. elegans worms, thereby driving expression of a transgene under the control of a heat shock promoter. By using IR-LEGO we attempted to rescue several mutant phenotypes of worms at the single-cell level. Diverse cell behaviors including differentiation and migration of target cells can be manipulated by gene induction mediated by IR-LEGO. Our results showed that IR-LEGO can be used to manipulate cell-autonomous as well as cell-nonautonomous behaviors, further confirming that irradiation using IR-LEGO has no harmful effects on the targets. Thus, IR-LEGO serves as valuable tools for manipulating biological processes in living organisms.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2009.5351899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methods for turning on/off gene expression at any desired time and place in vivo would be useful for analyzing various biological processes. We have developed a novel microscopic system utilizing an infrared laser, IR-LEGO (infrared-laser evoked gene operator), which is designed to deposit heat locally in living organisms. We have shown that IR-LEGO enables us to induce the heat shock response efficiently in targeted single cells of C. elegans worms, thereby driving expression of a transgene under the control of a heat shock promoter. By using IR-LEGO we attempted to rescue several mutant phenotypes of worms at the single-cell level. Diverse cell behaviors including differentiation and migration of target cells can be manipulated by gene induction mediated by IR-LEGO. Our results showed that IR-LEGO can be used to manipulate cell-autonomous as well as cell-nonautonomous behaviors, further confirming that irradiation using IR-LEGO has no harmful effects on the targets. Thus, IR-LEGO serves as valuable tools for manipulating biological processes in living organisms.
利用IR-LEGO在体内操纵目标单细胞的行为
在体内任意时间和地点开启/关闭基因表达的方法将有助于分析各种生物过程。我们开发了一种利用红外激光器的新型显微系统,IR-LEGO(红外激光诱发基因操作符),旨在将热量局部沉积在生物体中。我们已经证明,IR-LEGO使我们能够在秀丽隐杆线虫的靶单细胞中有效地诱导热休克反应,从而在热休克启动子的控制下驱动转基因的表达。通过IR-LEGO,我们试图在单细胞水平上挽救几种蠕虫的突变表型。IR-LEGO介导的基因诱导可以调控靶细胞的分化和迁移等多种细胞行为。我们的研究结果表明,IR-LEGO可以用来操纵细胞自主和细胞非自主行为,进一步证实了使用IR-LEGO照射对靶标没有有害影响。因此,IR-LEGO可作为操纵生物体生物过程的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信