Defect Detection of Patterned Fabric by Spectral Estimation Technique and Rough Set Classifier

Min Li, Z. Deng, Lijing Wang
{"title":"Defect Detection of Patterned Fabric by Spectral Estimation Technique and Rough Set Classifier","authors":"Min Li, Z. Deng, Lijing Wang","doi":"10.1109/GCIS.2013.36","DOIUrl":null,"url":null,"abstract":"A novel method for patterned fabric defect detection and classification using spectral estimation technique and rough set theory is presented in this paper. Estimating Signal Parameter via Rotational Invariance Technique (ESPRIT) is firstly used to extract the pattern from the image of the patterned fabric. Then, the shape and location of the flawed areas are detected by comparing the pattern image and the source image. A rough set classifier is trained and tested to detect the types of defects in the patterned fabric image. Experimental results show that this method can successfully analyze and recognize oil warp and weft defects in patterned fabrics with nearly 96% success rate.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel method for patterned fabric defect detection and classification using spectral estimation technique and rough set theory is presented in this paper. Estimating Signal Parameter via Rotational Invariance Technique (ESPRIT) is firstly used to extract the pattern from the image of the patterned fabric. Then, the shape and location of the flawed areas are detected by comparing the pattern image and the source image. A rough set classifier is trained and tested to detect the types of defects in the patterned fabric image. Experimental results show that this method can successfully analyze and recognize oil warp and weft defects in patterned fabrics with nearly 96% success rate.
基于谱估计和粗糙集分类器的图案织物缺陷检测
提出了一种基于谱估计技术和粗糙集理论的图案织物缺陷检测与分类新方法。首先利用旋转不变性估计信号参数技术(ESPRIT)从图案织物图像中提取图案。然后,通过对比图案图像和源图像来检测缺陷区域的形状和位置。对粗糙集分类器进行训练和测试,以检测图案织物图像中的缺陷类型。实验结果表明,该方法能较好地分析和识别花型织物中的油样经纬缺陷,准确率接近96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信