Curve evolution, boundary-value stochastic processes, the Mumford-Shah problem, and missing data applications

A. Tsai, A. Yezzi, A. Willsky
{"title":"Curve evolution, boundary-value stochastic processes, the Mumford-Shah problem, and missing data applications","authors":"A. Tsai, A. Yezzi, A. Willsky","doi":"10.1109/ICIP.2000.899521","DOIUrl":null,"url":null,"abstract":"We present an estimation-theoretic approach to curve evolution for the Mumford-Shah problem. By viewing an active contour as the set of discontinuities in the Mumford-Shah problem, we may use the corresponding functional to determine gradient descent evolution equations to deform the active contour. In each gradient descent step, we solve a corresponding optimal estimation problem, connecting the Mumford-Shah functional and curve evolution with the theory of boundary-value stochastic processes. In employing the Mumford-Shah functional, our active contour model inherits its attractive ability to generate, in a coupled manner, both a smooth reconstruction and a segmentation of the image. Next, by generalizing the data fidelity term of the original Mumford-Shah functional to incorporate a spatially varying penalty, we extend our method to problems in which data quality varies across the image and to images in which sets of pixel measurements are missing. This more general model leads us to a novel PDE-based approach for simultaneous image magnification, segmentation, and smoothing, thereby extending the traditional applications of the Mumford-Shah functional which only considers simultaneous segmentation and smoothing.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.899521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present an estimation-theoretic approach to curve evolution for the Mumford-Shah problem. By viewing an active contour as the set of discontinuities in the Mumford-Shah problem, we may use the corresponding functional to determine gradient descent evolution equations to deform the active contour. In each gradient descent step, we solve a corresponding optimal estimation problem, connecting the Mumford-Shah functional and curve evolution with the theory of boundary-value stochastic processes. In employing the Mumford-Shah functional, our active contour model inherits its attractive ability to generate, in a coupled manner, both a smooth reconstruction and a segmentation of the image. Next, by generalizing the data fidelity term of the original Mumford-Shah functional to incorporate a spatially varying penalty, we extend our method to problems in which data quality varies across the image and to images in which sets of pixel measurements are missing. This more general model leads us to a novel PDE-based approach for simultaneous image magnification, segmentation, and smoothing, thereby extending the traditional applications of the Mumford-Shah functional which only considers simultaneous segmentation and smoothing.
曲线演化,边值随机过程,Mumford-Shah问题,以及缺失数据应用
我们提出了一种估计理论方法来求解Mumford-Shah问题的曲线演化。通过将活动轮廓看成是Mumford-Shah问题中的不连续点集合,我们可以使用相应的泛函来确定梯度下降演化方程来变形活动轮廓。在每个梯度下降步骤中,我们解决了一个相应的最优估计问题,将Mumford-Shah泛函和曲线演化与边值随机过程理论联系起来。在使用Mumford-Shah函数时,我们的活动轮廓模型继承了其以耦合方式生成平滑重建和图像分割的吸引力。接下来,通过推广原始Mumford-Shah函数的数据保真度项以包含空间变化的惩罚,我们将方法扩展到图像中数据质量变化的问题以及图像中缺少像素测量集的问题。这个更通用的模型为我们提供了一种新的基于pde的方法,用于同时进行图像放大、分割和平滑,从而扩展了只考虑同时分割和平滑的Mumford-Shah函数的传统应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信