Ryan M. Rogers, Aaron Roth, Jonathan Ullman, Zhiwei Steven Wu
{"title":"Inducing Approximately Optimal Flow Using Truthful Mediators","authors":"Ryan M. Rogers, Aaron Roth, Jonathan Ullman, Zhiwei Steven Wu","doi":"10.1145/2764468.2764509","DOIUrl":null,"url":null,"abstract":"We revisit a classic coordination problem from the perspective of mechanism design: how can we coordinate a social welfare maximizing flow in a network congestion game with selfish players? The classical approach, which computes tolls as a function of known demands, fails when the demands are unknown to the mechanism designer, and naively eliciting them does not necessarily yield a truthful mechanism. Instead, we introduce a weak mediator that can provide suggested routes to players and set tolls as a function of reported demands. However, players can choose to ignore or misreport their type to this mediator. Using techniques from differential privacy, we show how to design a weak mediator such that it is an asymptotic ex-post Nash equilibrium for all players to truthfully report their types to the mediator and faithfully follow its suggestion, and that when they do, they end up playing a nearly optimal flow. Notably, our solution works in settings of incomplete information even in the absence of a prior distribution on player types. Along the way, we develop new techniques for privately solving convex programs which may be of independent interest.","PeriodicalId":376992,"journal":{"name":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2764468.2764509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
We revisit a classic coordination problem from the perspective of mechanism design: how can we coordinate a social welfare maximizing flow in a network congestion game with selfish players? The classical approach, which computes tolls as a function of known demands, fails when the demands are unknown to the mechanism designer, and naively eliciting them does not necessarily yield a truthful mechanism. Instead, we introduce a weak mediator that can provide suggested routes to players and set tolls as a function of reported demands. However, players can choose to ignore or misreport their type to this mediator. Using techniques from differential privacy, we show how to design a weak mediator such that it is an asymptotic ex-post Nash equilibrium for all players to truthfully report their types to the mediator and faithfully follow its suggestion, and that when they do, they end up playing a nearly optimal flow. Notably, our solution works in settings of incomplete information even in the absence of a prior distribution on player types. Along the way, we develop new techniques for privately solving convex programs which may be of independent interest.