A recommendation algorithm for point of interest using time-based collaborative filtering

Jun Zeng, Xin He, Feng Li, Yingbo Wu
{"title":"A recommendation algorithm for point of interest using time-based collaborative filtering","authors":"Jun Zeng, Xin He, Feng Li, Yingbo Wu","doi":"10.1504/ijitm.2020.10028806","DOIUrl":null,"url":null,"abstract":"Location-based social networks (LBSNs) make it possible for people to share their visited places by uploading the check-in information. To improve the efficiency of recommendation algorithm, researchers introduce check-in data into point of interest (POI) recommendation to help users find new and interesting place. However, some researches ignore the signification of time factor for POI recommendation in LBSNs. In this paper, we propose a time-based collaborative filtering algorithm according to the similarity between users which combines the global similarity during a long period and local similarity within a short time interval. The experimental results show that the method we proposed can get more accurate recommendation.","PeriodicalId":340536,"journal":{"name":"Int. J. Inf. Technol. Manag.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijitm.2020.10028806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Location-based social networks (LBSNs) make it possible for people to share their visited places by uploading the check-in information. To improve the efficiency of recommendation algorithm, researchers introduce check-in data into point of interest (POI) recommendation to help users find new and interesting place. However, some researches ignore the signification of time factor for POI recommendation in LBSNs. In this paper, we propose a time-based collaborative filtering algorithm according to the similarity between users which combines the global similarity during a long period and local similarity within a short time interval. The experimental results show that the method we proposed can get more accurate recommendation.
一种基于时间协同过滤的兴趣点推荐算法
基于位置的社交网络(LBSNs)使得人们可以通过上传签到信息来分享他们去过的地方。为了提高推荐算法的效率,研究者将签到数据引入到兴趣点(POI)推荐中,以帮助用户找到新的和感兴趣的地方。然而,一些研究忽略了时间因素对LBSNs推荐POI的意义。本文根据用户之间的相似度,提出了一种基于时间的协同过滤算法,该算法将长时间内的全局相似度与短时间内的局部相似度相结合。实验结果表明,该方法可以获得更准确的推荐结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信