Communication Complexity of Statistical Distance

Thomas Watson
{"title":"Communication Complexity of Statistical Distance","authors":"Thomas Watson","doi":"10.1145/3170708","DOIUrl":null,"url":null,"abstract":"We prove nearly matching upper and lower bounds on the randomized communication complexity of the following problem: Alice and Bob are each given a probability distribution over n elements, and they wish to estimate within ±ε the statistical (total variation) distance between their distributions. For some range of parameters, there is up to a log n factor gap between the upper and lower bounds, and we identify a barrier to using information complexity techniques to improve the lower bound in this case. We also prove a side result that we discovered along the way: the randomized communication complexity of n-bit Majority composed with n-bit Greater Than is Θ (n log n).","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We prove nearly matching upper and lower bounds on the randomized communication complexity of the following problem: Alice and Bob are each given a probability distribution over n elements, and they wish to estimate within ±ε the statistical (total variation) distance between their distributions. For some range of parameters, there is up to a log n factor gap between the upper and lower bounds, and we identify a barrier to using information complexity techniques to improve the lower bound in this case. We also prove a side result that we discovered along the way: the randomized communication complexity of n-bit Majority composed with n-bit Greater Than is Θ (n log n).
统计距离的通信复杂度
我们证明了以下问题的随机通信复杂度的接近匹配的上界和下界:Alice和Bob分别给定n个元素的概率分布,并且他们希望在±ε内估计其分布之间的统计(总变异)距离。对于某些参数范围,在上界和下界之间存在高达log n个因子的差距,并且我们确定了在这种情况下使用信息复杂性技术来改进下界的障碍。我们还证明了我们在此过程中发现的一个副结果:n-bit Majority与n-bit大于组成的随机通信复杂度为Θ (n log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信