Identifying Complex Patterns in Online Information Retrieval Processes

Debora Di Caprio, Francisco J. Santos Arteaga
{"title":"Identifying Complex Patterns in Online Information Retrieval Processes","authors":"Debora Di Caprio, Francisco J. Santos Arteaga","doi":"10.54941/ahfe100964","DOIUrl":null,"url":null,"abstract":"We define a computable benchmark framework that replicates the online information retrieval behavior of users as they proceed through the alternatives ranked by a search engine. Through their search processes, decision makers (DMs) must evaluate the characteristics defining the alternatives while aiming to observe a predetermined number satisfying their subjective preferences. A larger number of predetermined alternatives requires more complex information assimilation capacities on the side of DMs. Similarly, the complexity of the algorithms defined to formalize the subsequent retrieval behavior increases in the number of alternatives considered. The set of algorithms delivers two different strings of data, the pages clicked by the DMs and a numerical representation of each evaluation determining their retrieval behavior. We illustrate how, even when providing an Artificial Neural Network with both strings of data, the model faces considerable problems categorizing DMs correctly as their information assimilation capacities are enhanced.","PeriodicalId":292077,"journal":{"name":"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe100964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define a computable benchmark framework that replicates the online information retrieval behavior of users as they proceed through the alternatives ranked by a search engine. Through their search processes, decision makers (DMs) must evaluate the characteristics defining the alternatives while aiming to observe a predetermined number satisfying their subjective preferences. A larger number of predetermined alternatives requires more complex information assimilation capacities on the side of DMs. Similarly, the complexity of the algorithms defined to formalize the subsequent retrieval behavior increases in the number of alternatives considered. The set of algorithms delivers two different strings of data, the pages clicked by the DMs and a numerical representation of each evaluation determining their retrieval behavior. We illustrate how, even when providing an Artificial Neural Network with both strings of data, the model faces considerable problems categorizing DMs correctly as their information assimilation capacities are enhanced.
识别在线信息检索过程中的复杂模式
我们定义了一个可计算的基准框架,该框架复制了用户在搜索引擎对备选方案进行排序时的在线信息检索行为。通过他们的搜索过程,决策者(DMs)必须评估定义选择的特征,同时以观察到满足他们主观偏好的预定数量为目标。更多数量的预定替代方案需要dm方面更复杂的信息同化能力。类似地,定义用于形式化后续检索行为的算法的复杂性随着所考虑的备选方案数量的增加而增加。这组算法提供两个不同的数据字符串,即dm单击的页面,以及决定其检索行为的每个评估的数值表示。我们说明,即使在提供具有两组数据的人工神经网络时,随着dm的信息同化能力增强,模型如何在正确分类dm方面面临相当大的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信