A Motor-Imagery BCI System Based on Deep Learning Networks and Its Applications

Jzau-Sheng Lin, Ray Shihb
{"title":"A Motor-Imagery BCI System Based on Deep Learning Networks and Its Applications","authors":"Jzau-Sheng Lin, Ray Shihb","doi":"10.5772/INTECHOPEN.75009","DOIUrl":null,"url":null,"abstract":"Motor imagery brain-computer interface (BCI) by using of deep-learning models is pro- posed in this paper. In which, we used the electroencephalogram (EEG) signals of motor imagery (MI-EEG) to identify different imagery activities. The brain dynamics of motor imagery are usually measured by EEG as non-stationary time series of low signal-to-noise ratio. However, a variety of methods have been previously developed to classify MI-EEG signals getting not satisfactory results owing to lack of characteristics in time-frequency features. In this paper, discrete wavelet transform (DWT) was applied to transform MIEEG signals and extract their effective coefficients as the time-frequency features. Then two deep learning (DL) models named Long-short term memory (LSTM) and gated recurrent neu- ral networks (GRNN) are used to classify MI-EEG data. LSTM is designed to fight against vanishing gradients. GRNN makes each recurrent unit to capture dependencies of differ - ent time scales adaptively. Similar scheme of the LSTM unit, GRNN has gating units that modulate the flow of information inside the unit, but without having a separate memory cells. Experimental results show that GRNN and LSTM yield higher classification accura-cies compared to the existing approaches that is helpful for the further research and applica- tion of relative RNN in processing of MI-EEG.","PeriodicalId":448864,"journal":{"name":"Evolving BCI Therapy - Engaging Brain State Dynamics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving BCI Therapy - Engaging Brain State Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Motor imagery brain-computer interface (BCI) by using of deep-learning models is pro- posed in this paper. In which, we used the electroencephalogram (EEG) signals of motor imagery (MI-EEG) to identify different imagery activities. The brain dynamics of motor imagery are usually measured by EEG as non-stationary time series of low signal-to-noise ratio. However, a variety of methods have been previously developed to classify MI-EEG signals getting not satisfactory results owing to lack of characteristics in time-frequency features. In this paper, discrete wavelet transform (DWT) was applied to transform MIEEG signals and extract their effective coefficients as the time-frequency features. Then two deep learning (DL) models named Long-short term memory (LSTM) and gated recurrent neu- ral networks (GRNN) are used to classify MI-EEG data. LSTM is designed to fight against vanishing gradients. GRNN makes each recurrent unit to capture dependencies of differ - ent time scales adaptively. Similar scheme of the LSTM unit, GRNN has gating units that modulate the flow of information inside the unit, but without having a separate memory cells. Experimental results show that GRNN and LSTM yield higher classification accura-cies compared to the existing approaches that is helpful for the further research and applica- tion of relative RNN in processing of MI-EEG.
基于深度学习网络的运动图像BCI系统及其应用
提出了基于深度学习模型的运动图像脑机接口(BCI)。其中,我们利用运动意象(MI-EEG)的脑电图信号来识别不同的意象活动。运动图像的脑动态通常是由EEG测量的低信噪比的非平稳时间序列。然而,目前已有多种方法对脑电信号进行分类,但由于缺乏时频特征,分类效果不理想。本文采用离散小波变换(DWT)对MIEEG信号进行变换,提取其有效系数作为时频特征。然后利用长短期记忆(LSTM)和门控递归神经网络(GRNN)两种深度学习模型对脑电数据进行分类。LSTM被设计用来对抗渐变消失。GRNN使每个循环单元自适应地捕捉不同时间尺度的依赖关系。与LSTM单元类似,GRNN具有调节单元内信息流的门控单元,但没有单独的存储单元。实验结果表明,与现有方法相比,GRNN和LSTM的分类准确率更高,这有助于相对RNN在MI-EEG处理中的进一步研究和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信