Non-Euclidean Kalman Filters for Nonlinear Measurements

Samuel A. Shapero, P. Miceli
{"title":"Non-Euclidean Kalman Filters for Nonlinear Measurements","authors":"Samuel A. Shapero, P. Miceli","doi":"10.23919/fusion43075.2019.9011350","DOIUrl":null,"url":null,"abstract":"Target tracking in the presence of nonlinear measurements has long been recognized as a challenge. When measurements are in polar coordinates this sometimes manifests itself as the ‘contact lens’ distribution, especially in radar applications. The authors propose a new filtering paradigm - the Non-Euclidean Kalman Filter (NEUKF) - to efficiently represent these nonlinear distributions using isomorphic coordinate transforms, which requires only modest computation beyond the popular Unscented Kalman Filter. They propose a family of parabolic isomorphisms well suited for representing the contact lens distribution. The NEUKF using one of the parabolic transforms is compared to a number of other prominent filters in both single and multiple sensor scenarios. The NEUKF demonstrates either the best-in-class or competitive precision and accuracy across all four scenarios, and is the only filter to maintain near perfect covariance consistency at all times.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"131 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Target tracking in the presence of nonlinear measurements has long been recognized as a challenge. When measurements are in polar coordinates this sometimes manifests itself as the ‘contact lens’ distribution, especially in radar applications. The authors propose a new filtering paradigm - the Non-Euclidean Kalman Filter (NEUKF) - to efficiently represent these nonlinear distributions using isomorphic coordinate transforms, which requires only modest computation beyond the popular Unscented Kalman Filter. They propose a family of parabolic isomorphisms well suited for representing the contact lens distribution. The NEUKF using one of the parabolic transforms is compared to a number of other prominent filters in both single and multiple sensor scenarios. The NEUKF demonstrates either the best-in-class or competitive precision and accuracy across all four scenarios, and is the only filter to maintain near perfect covariance consistency at all times.
非线性测量的非欧几里得卡尔曼滤波
存在非线性测量的目标跟踪一直被认为是一个挑战。当测量是在极坐标时,这有时表现为“隐形眼镜”分布,特别是在雷达应用中。作者提出了一种新的滤波范式-非欧几里得卡尔曼滤波器(NEUKF) -利用同构坐标变换有效地表示这些非线性分布,它只需要比流行的Unscented卡尔曼滤波器进行适度的计算。他们提出了一个很适合表示隐形眼镜分布的抛物线同构族。在单传感器和多传感器场景中,使用抛物变换的NEUKF与许多其他突出的滤波器进行了比较。NEUKF在所有四种情况下都具有同类最佳或具有竞争力的精度和准确性,并且是始终保持近乎完美协方差一致性的唯一过滤器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信