Prioritization of Issues and Requirements by Cumulative Voting: A Compositional Data Analysis Framework

Panagiota Chatzipetrou, L. Angelis, Per Rovegard, C. Wohlin
{"title":"Prioritization of Issues and Requirements by Cumulative Voting: A Compositional Data Analysis Framework","authors":"Panagiota Chatzipetrou, L. Angelis, Per Rovegard, C. Wohlin","doi":"10.1109/SEAA.2010.35","DOIUrl":null,"url":null,"abstract":"Cumulative Voting (CV), also known as Hundred-Point Method, is a simple and straightforward technique, used in various prioritization studies in software engineering. Multiple stakeholders (users, developers, consultants, marketing representatives or customers) are asked to prioritize issues concerning requirements, process improvements or change management in a ratio scale. The data obtained from such studies contain useful information regarding correlations of issues and trends of the respondents towards them. However, the multivariate and constrained nature of data requires particular statistical analysis. In this paper we propose a statistical framework; the multivariate Compositional Data Analysis (CoDA) for analyzing data obtained from CV prioritization studies. Certain methodologies for studying the correlation structure of variables are applied to a dataset concerning impact analysis issues prioritized by software professionals under different perspectives. These involve filling of zeros, transformation using the geometric mean, principle component analysis on the transformed variables and graphical representation by biplots and ternary plots.","PeriodicalId":112012,"journal":{"name":"2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Cumulative Voting (CV), also known as Hundred-Point Method, is a simple and straightforward technique, used in various prioritization studies in software engineering. Multiple stakeholders (users, developers, consultants, marketing representatives or customers) are asked to prioritize issues concerning requirements, process improvements or change management in a ratio scale. The data obtained from such studies contain useful information regarding correlations of issues and trends of the respondents towards them. However, the multivariate and constrained nature of data requires particular statistical analysis. In this paper we propose a statistical framework; the multivariate Compositional Data Analysis (CoDA) for analyzing data obtained from CV prioritization studies. Certain methodologies for studying the correlation structure of variables are applied to a dataset concerning impact analysis issues prioritized by software professionals under different perspectives. These involve filling of zeros, transformation using the geometric mean, principle component analysis on the transformed variables and graphical representation by biplots and ternary plots.
通过累积投票确定问题和需求的优先次序:一个组成数据分析框架
累积投票(CV),也称为百分法,是一种简单直接的技术,用于软件工程中的各种优先级研究。多个涉众(用户、开发人员、顾问、市场代表或客户)被要求按比例划分与需求、过程改进或变更管理相关的问题的优先级。从这类研究中获得的数据包含有关问题之间的相关性和答复者对这些问题的趋势的有用信息。然而,数据的多变量和约束性质需要特殊的统计分析。本文提出了一个统计框架;多变量成分数据分析(CoDA)用于分析CV优先级研究中获得的数据。将研究变量关联结构的特定方法应用于软件专业人员在不同视角下优先考虑的影响分析问题数据集。这些方法包括填零、使用几何平均值进行变换、对变换变量进行主成分分析以及用双标图和三元标图表示图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信