Multistability of S-Asymptotically ω-Periodic Solutions for Fractional-Order Neural Networks with Time Variable Delays

Chenxi Song, Sitian Qin, Jiqiang Feng
{"title":"Multistability of S-Asymptotically ω-Periodic Solutions for Fractional-Order Neural Networks with Time Variable Delays","authors":"Chenxi Song, Sitian Qin, Jiqiang Feng","doi":"10.1109/icaci55529.2022.9837610","DOIUrl":null,"url":null,"abstract":"This paper explores the multistability of S-asymptotically $\\omega$-periodic solutions for fractional-order neural networks with time variable delays (FVDNNs). Benefited from the geometrical configuration of the nonlinear and non-monotonic activation function, we prove the coexistence of $(K+1)^{n}$ S-asymptotically $\\omega$-periodic solutions with multiple asymptotical stability, where K is a positive integer. In contrast to the previous works, the obtained results extensively raise the amount of S-asymptotically $\\omega$-periodic solutions of FVDNNs in this paper. Besides, two numerical examples are shown to illustrate the feasibility of obtained results.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the multistability of S-asymptotically $\omega$-periodic solutions for fractional-order neural networks with time variable delays (FVDNNs). Benefited from the geometrical configuration of the nonlinear and non-monotonic activation function, we prove the coexistence of $(K+1)^{n}$ S-asymptotically $\omega$-periodic solutions with multiple asymptotical stability, where K is a positive integer. In contrast to the previous works, the obtained results extensively raise the amount of S-asymptotically $\omega$-periodic solutions of FVDNNs in this paper. Besides, two numerical examples are shown to illustrate the feasibility of obtained results.
时变时滞分数阶神经网络s -渐近ω-周期解的多重稳定性
本文研究了具有时变时滞的分数阶神经网络(FVDNNs)的s -渐近周期解的多重稳定性。利用非线性非单调激活函数的几何构型,证明了具有多重渐近稳定性的$(K+1)^{n}$ s -周期解的共存性,其中K为正整数。与以往的工作相比,本文得到的结果广泛地提高了fvdnn的s -渐近$\ ω $周期解的数量。并通过两个数值算例说明了所得结果的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信