Dense spatio-temporal features for non-parametric anomaly detection and localization

Lorenzo Seidenari, M. Bertini, A. Bimbo
{"title":"Dense spatio-temporal features for non-parametric anomaly detection and localization","authors":"Lorenzo Seidenari, M. Bertini, A. Bimbo","doi":"10.1145/1877868.1877877","DOIUrl":null,"url":null,"abstract":"In this paper we propose dense spatio-temporal features to capture scene dynamic statistics together with appearance, in video surveillance applications. These features are exploited in a real-time anomaly detection system. Anomaly detection is performed using a non-parametric modelling, evaluating directly local descriptor statistics, and an unsupervised or semi-supervised approach. A method to update scene statistics, to cope with scene changes that typically happen in real world settings, is also provided. The proposed method is tested on publicly available datasets and compared to other state-of-the-art approaches.","PeriodicalId":360789,"journal":{"name":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877868.1877877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we propose dense spatio-temporal features to capture scene dynamic statistics together with appearance, in video surveillance applications. These features are exploited in a real-time anomaly detection system. Anomaly detection is performed using a non-parametric modelling, evaluating directly local descriptor statistics, and an unsupervised or semi-supervised approach. A method to update scene statistics, to cope with scene changes that typically happen in real world settings, is also provided. The proposed method is tested on publicly available datasets and compared to other state-of-the-art approaches.
用于非参数异常检测和定位的密集时空特征
在本文中,我们提出密集的时空特征来捕捉场景动态统计与外观,在视频监控应用。这些特征在实时异常检测系统中得到充分利用。异常检测使用非参数建模,直接评估局部描述符统计,以及无监督或半监督方法执行。还提供了一种更新场景统计数据的方法,以应对通常发生在现实世界设置中的场景变化。该方法在公开可用的数据集上进行了测试,并与其他最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信