Computational prediction of hydrodynamic coefficients for heave motion

F. Cakici
{"title":"Computational prediction of hydrodynamic coefficients for heave motion","authors":"F. Cakici","doi":"10.14744/seatific.2021.0002","DOIUrl":null,"url":null,"abstract":"In this study, the hydrodynamic coefficients associated with heave motion are obtained by using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. The well-known Wigley hull is selected for the calculations of uncoupled added mass and damping coefficients (A33, B33) in deep water. Numerical simulations are performed for six different oscillation frequencies at the Froude number 0.3. First, the 3D ship model is forced in the heave direction with certain frequencies and then the hydrodynamic coefficients are computed with the help of Fourier series expansion. Numerical results are compared with those obtained by the experiments and strip theory. The verification and validation study for the damping term is also performed by implementing the Grid Convergence Index (GCI) method.","PeriodicalId":170561,"journal":{"name":"Seatific Engineering Research Journal","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seatific Engineering Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/seatific.2021.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the hydrodynamic coefficients associated with heave motion are obtained by using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. The well-known Wigley hull is selected for the calculations of uncoupled added mass and damping coefficients (A33, B33) in deep water. Numerical simulations are performed for six different oscillation frequencies at the Froude number 0.3. First, the 3D ship model is forced in the heave direction with certain frequencies and then the hydrodynamic coefficients are computed with the help of Fourier series expansion. Numerical results are compared with those obtained by the experiments and strip theory. The verification and validation study for the damping term is also performed by implementing the Grid Convergence Index (GCI) method.
升沉运动水动力系数的计算预测
本文采用非定常reynolds -average Navier-Stokes (URANS)方法获得了与升沉运动相关的水动力系数。选择著名的威格利船体进行深水中不耦合附加质量和阻尼系数(A33, B33)的计算。在弗鲁德数为0.3时,对6种不同的振荡频率进行了数值模拟。首先将三维船舶模型以一定频率向升沉方向施加压力,然后利用傅里叶级数展开计算其水动力系数。数值结果与实验结果和条形理论结果进行了比较。采用网格收敛指数(GCI)方法对阻尼项进行了验证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信