Subspace learning with frequency regularizer: Its application to face recognition

Zhen Lei, Dong Yi, Xiangsheng Huang, S. Li
{"title":"Subspace learning with frequency regularizer: Its application to face recognition","authors":"Zhen Lei, Dong Yi, Xiangsheng Huang, S. Li","doi":"10.1109/ICB.2015.7139113","DOIUrl":null,"url":null,"abstract":"Subspace learning is an important technique to enhance the discriminative ability of feature representation and reduce the dimension to improve its efficiency. Due to limited training samples and the usual high-dimensional feature, subspace learning always suffers from overfitting problem, which affects its generalization performance. One possible method is to introduce prior information as a regularizer to constrain its solution space. Traditional regularizers are usually designed in spatial domain, which usually make the projection smooth. In this work, we propose a frequency regularizer (FR), which suppresses the high frequency energy so that the smooth priori is incorporated. Two representative supervised subspace methods with frequency regularizer, FR-LDA and FR-SR are introduced and further applied to face recognition problem. Extensive experiments on popular face databases validate the effectiveness and superiority of FR based subspace learning compared to traditional subspace learning methods.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Subspace learning is an important technique to enhance the discriminative ability of feature representation and reduce the dimension to improve its efficiency. Due to limited training samples and the usual high-dimensional feature, subspace learning always suffers from overfitting problem, which affects its generalization performance. One possible method is to introduce prior information as a regularizer to constrain its solution space. Traditional regularizers are usually designed in spatial domain, which usually make the projection smooth. In this work, we propose a frequency regularizer (FR), which suppresses the high frequency energy so that the smooth priori is incorporated. Two representative supervised subspace methods with frequency regularizer, FR-LDA and FR-SR are introduced and further applied to face recognition problem. Extensive experiments on popular face databases validate the effectiveness and superiority of FR based subspace learning compared to traditional subspace learning methods.
频率正则化子空间学习在人脸识别中的应用
子空间学习是增强特征表示判别能力和降维提高特征表示效率的重要技术。由于训练样本有限和通常的高维特征,子空间学习经常存在过拟合问题,影响其泛化性能。一种可能的方法是引入先验信息作为正则化器来约束其解空间。传统的正则化器通常是在空间域中设计的,通常使投影平滑。在这项工作中,我们提出了一种频率正则器(FR),它抑制了高频能量,从而使平滑先验被纳入其中。介绍了两种具有代表性的带频率正则化的监督子空间方法FR-LDA和FR-SR,并将其进一步应用于人脸识别问题。在流行的人脸数据库上进行的大量实验验证了基于神经网络的子空间学习方法相对于传统子空间学习方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信