Opinion finding in blogs: a passage-based language modeling approach

M. S. Missen, M. Boughanem, G. Cabanac
{"title":"Opinion finding in blogs: a passage-based language modeling approach","authors":"M. S. Missen, M. Boughanem, G. Cabanac","doi":"10.5555/1937055.1937093","DOIUrl":null,"url":null,"abstract":"In this work, we propose a Passage-Based Language Modeling (LM) approach for Opinion Finding in Blogs. Our decision to use Language Modeling in this work is totally based on the importance of passages in blogposts and performance LM has given in various Opinion Detection approaches. In addition to this, we propose a novel method for bi-dimensional Query Expansion with relevant and opinionated terms using Wikipedia and Relevance-Feedback mechanism respectively. Besides all this, we also compare the performance of three Passage-based document ranking functions (Linear, Avg, Max). For evaluation purposes, we use the data collection of TREC Blog06 with 50 topics of TREC 2006 over TREC provided best baseline with opinion finding MAP of 0.3022. Our approach gives a MAP improvement of almost 9.29% over best TREC provided baseline (baseline4).","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we propose a Passage-Based Language Modeling (LM) approach for Opinion Finding in Blogs. Our decision to use Language Modeling in this work is totally based on the importance of passages in blogposts and performance LM has given in various Opinion Detection approaches. In addition to this, we propose a novel method for bi-dimensional Query Expansion with relevant and opinionated terms using Wikipedia and Relevance-Feedback mechanism respectively. Besides all this, we also compare the performance of three Passage-based document ranking functions (Linear, Avg, Max). For evaluation purposes, we use the data collection of TREC Blog06 with 50 topics of TREC 2006 over TREC provided best baseline with opinion finding MAP of 0.3022. Our approach gives a MAP improvement of almost 9.29% over best TREC provided baseline (baseline4).
blog中的意见查找:基于段落的语言建模方法
在这项工作中,我们提出了一种基于段落的语言建模(LM)方法来寻找博客中的观点。我们决定在这项工作中使用语言建模完全是基于博客文章中段落的重要性和LM在各种意见检测方法中给出的性能。在此基础上,我们提出了一种基于Wikipedia和Relevance-Feedback机制的双向查询扩展方法。除此之外,我们还比较了三个基于段落的文档排序函数(Linear, Avg, Max)的性能。为了评估目的,我们使用TREC Blog06的数据收集,其中TREC 2006的50个主题超过TREC提供的最佳基线,意见发现MAP为0.3022。我们的方法使MAP比最好的TREC提供的基线(基线4)提高了近9.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信