Artificial cognition for autonomous planar vehicles: modelling collision avoidance and collective manoeuvre

V. Ivancevic, E. Aidman, L. Yen
{"title":"Artificial cognition for autonomous planar vehicles: modelling collision avoidance and collective manoeuvre","authors":"V. Ivancevic, E. Aidman, L. Yen","doi":"10.1504/IJIDSS.2008.021972","DOIUrl":null,"url":null,"abstract":"A hierarchical cognitive robotics model for a team of unattended robotic ground vehicles (UGVs) is proposed. The first level rigorously defines conflict resolution for a couple of UGVs, using dynamical games on SE(2)-groups of plane motion. The second level extends it to n UGVs, using Nash-equilibrium approach. The third provides adaptive guidance for several groups of UGVs. The fourth, collective manoeuvre level, proposes a combination of an attractor neural model and a fuzzy-neural 'supervisor', to perform an adaptive path definition and waypoints selection, as well as chaos control. The fifth, cognitive level, performs overall mission planning/feedback control.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2008.021972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A hierarchical cognitive robotics model for a team of unattended robotic ground vehicles (UGVs) is proposed. The first level rigorously defines conflict resolution for a couple of UGVs, using dynamical games on SE(2)-groups of plane motion. The second level extends it to n UGVs, using Nash-equilibrium approach. The third provides adaptive guidance for several groups of UGVs. The fourth, collective manoeuvre level, proposes a combination of an attractor neural model and a fuzzy-neural 'supervisor', to perform an adaptive path definition and waypoints selection, as well as chaos control. The fifth, cognitive level, performs overall mission planning/feedback control.
自主平面车辆的人工认知:建模避碰和集体机动
提出了一种无人值守地面机器人(ugv)团队的分层认知机器人模型。第一级严格定义了几个ugv的冲突解决方案,使用SE(2)上的动态游戏——平面运动组。第二层使用纳什均衡方法将其扩展到n个ugv。第三种是对多组ugv进行自适应引导。第四,集体机动水平,提出了一个吸引子神经模型和一个模糊神经“监督者”的组合,以执行自适应路径定义和路点选择,以及混沌控制。第五,认知水平,执行整体任务规划/反馈控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信