Bolstering Heuristics for Statistical Validation of Prediction Algorithms

Alex F. Mendelson, Maria A. Zuluaga, B. Hutton, S. Ourselin
{"title":"Bolstering Heuristics for Statistical Validation of Prediction Algorithms","authors":"Alex F. Mendelson, Maria A. Zuluaga, B. Hutton, S. Ourselin","doi":"10.1109/PRNI.2015.16","DOIUrl":null,"url":null,"abstract":"Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a principle by which existing statistical tests can be conservatively extended to make use of arbitrary numbers of repeated experiments. We apply this to the problems of interval estimation and pair wise comparison for the accuracy of classification algorithms, and test the resulting procedures on real and synthetic classification tasks. The interval coverages in the synthetic task are notably improved, and the comparison has both increased power and reduced type I error. Experiments in the ADNI dataset show that the low replicability of split-half based tests can be dramatically improved.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine learning research in image-based computer aided diagnosis is a field characterised by rich models and relatively small datasets. In this regime, conventional statistical tests for cross validation results may no longer be optimal due to variability in training set quality. We present a principle by which existing statistical tests can be conservatively extended to make use of arbitrary numbers of repeated experiments. We apply this to the problems of interval estimation and pair wise comparison for the accuracy of classification algorithms, and test the resulting procedures on real and synthetic classification tasks. The interval coverages in the synthetic task are notably improved, and the comparison has both increased power and reduced type I error. Experiments in the ADNI dataset show that the low replicability of split-half based tests can be dramatically improved.
预测算法统计验证的增强启发式
基于图像的计算机辅助诊断中的机器学习研究是一个以丰富的模型和相对较小的数据集为特征的领域。在这种情况下,由于训练集质量的可变性,交叉验证结果的传统统计测试可能不再是最佳的。我们提出了一个原则,根据这个原则,现有的统计检验可以保守地扩展,以利用任意数量的重复实验。我们将其应用于区间估计和配对比较分类算法的准确性问题,并在真实和合成分类任务上测试了结果过程。综合任务的区间覆盖率得到了显著提高,比较结果既提高了效率,又降低了I型错误。在ADNI数据集上进行的实验表明,该方法可以显著改善基于二分法的测试的低可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信