SZTS: A Novel Big Data Transportation System Benchmark Suite

Wen Xiong, Zhibin Yu, L. Eeckhout, Zhengdong Bei, Fan Zhang, Chengzhong Xu
{"title":"SZTS: A Novel Big Data Transportation System Benchmark Suite","authors":"Wen Xiong, Zhibin Yu, L. Eeckhout, Zhengdong Bei, Fan Zhang, Chengzhong Xu","doi":"10.1109/ICPP.2015.91","DOIUrl":null,"url":null,"abstract":"Data analytics is at the core of the supply chain for both products and services in modern economies and societies. Big data workloads however, are placing unprecedented demands on computing technologies, calling for a deep understanding and characterization of these emerging workloads. In this paper, we propose Shen Zhen Transportation System (SZTS), a novel big data Hadoop benchmark suite comprised of real-life transportation analysis applications with real-life input data sets from Shenzhen in China. SZTS uniquely focuses on a specific and real-life application domain whereas other existing Hadoop benchmark suites, such as Hi Bench and Cloud Rank-D, consist of generic algorithms with synthetic inputs. We perform a cross-layer workload characterization at both the job and micro architecture level, revealing unique characteristics of SZTS compared to existing Hadoop benchmarks as well as general-purpose multi-core PARSEC benchmarks. We also study the sensitivity of workload behavior with respect to input data size, and propose a methodology for identifying representative input data sets.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Data analytics is at the core of the supply chain for both products and services in modern economies and societies. Big data workloads however, are placing unprecedented demands on computing technologies, calling for a deep understanding and characterization of these emerging workloads. In this paper, we propose Shen Zhen Transportation System (SZTS), a novel big data Hadoop benchmark suite comprised of real-life transportation analysis applications with real-life input data sets from Shenzhen in China. SZTS uniquely focuses on a specific and real-life application domain whereas other existing Hadoop benchmark suites, such as Hi Bench and Cloud Rank-D, consist of generic algorithms with synthetic inputs. We perform a cross-layer workload characterization at both the job and micro architecture level, revealing unique characteristics of SZTS compared to existing Hadoop benchmarks as well as general-purpose multi-core PARSEC benchmarks. We also study the sensitivity of workload behavior with respect to input data size, and propose a methodology for identifying representative input data sets.
SZTS:一个新的大数据交通系统基准套件
在现代经济和社会中,数据分析是产品和服务供应链的核心。然而,大数据工作负载对计算技术提出了前所未有的要求,要求对这些新兴工作负载进行深入理解和表征。在本文中,我们提出了深圳交通系统(SZTS),这是一个新颖的大数据Hadoop基准套件,由来自中国深圳的真实交通分析应用程序和真实输入数据集组成。SZTS独特地专注于一个特定的和现实生活中的应用领域,而其他现有的Hadoop基准套件,如Hi Bench和Cloud Rank-D,由合成输入的通用算法组成。我们在作业和微架构级别执行了跨层工作负载表征,揭示了SZTS与现有Hadoop基准测试以及通用多核PARSEC基准测试相比的独特特征。我们还研究了工作负载行为对输入数据大小的敏感性,并提出了一种识别代表性输入数据集的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信