Predicting Crime Scene Location Details for First Responders

S. Krishnan, Bing Zhou
{"title":"Predicting Crime Scene Location Details for First Responders","authors":"S. Krishnan, Bing Zhou","doi":"10.1109/ISDFS49300.2020.9116386","DOIUrl":null,"url":null,"abstract":"Responding to an emergency or crime can be challenging especially when one does not fully know the location details. Often first responders arrive a crime scene with little information and then make their way around. During an emergency, when seconds count and first responder units need to locate individuals requiring immediate assistance, they simply don’t have the time to figure out the location details at the facility or residence. In this experiment, the author’s leverage statistical predictive modeling and machine learning techniques to analyze a public dataset to predict premise/location details for first responders with reasonable accuracy.","PeriodicalId":221494,"journal":{"name":"2020 8th International Symposium on Digital Forensics and Security (ISDFS)","volume":"111 6 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS49300.2020.9116386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Responding to an emergency or crime can be challenging especially when one does not fully know the location details. Often first responders arrive a crime scene with little information and then make their way around. During an emergency, when seconds count and first responder units need to locate individuals requiring immediate assistance, they simply don’t have the time to figure out the location details at the facility or residence. In this experiment, the author’s leverage statistical predictive modeling and machine learning techniques to analyze a public dataset to predict premise/location details for first responders with reasonable accuracy.
为急救人员预测犯罪现场位置细节
应对紧急情况或犯罪可能具有挑战性,尤其是在不完全了解现场细节的情况下。第一反应人员通常在到达犯罪现场时了解的信息很少,然后就会四处奔波。在紧急情况下,由于时间紧迫,急救人员需要找到需要立即援助的人员,他们根本没有时间去了解设施或住所的详细位置。在本实验中,作者利用统计预测建模和机器学习技术分析公共数据集,以合理的准确度为第一响应人员预测场所/位置细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信