Regional Electromagnetic Environment Multi-Domain Sensing Algorithm Based on Hybrid Intelligent Optimization

Xiuhe Li, Qianqian Shi, Yang Shen
{"title":"Regional Electromagnetic Environment Multi-Domain Sensing Algorithm Based on Hybrid Intelligent Optimization","authors":"Xiuhe Li, Qianqian Shi, Yang Shen","doi":"10.1109/GEMCCON50979.2020.9456716","DOIUrl":null,"url":null,"abstract":"Electromagnetic environment signals are time-varying and non-stationary under harsh conditions, which cannot meet the basic requirements of ordinary Kriging interpolation method. Therefore, the paper proposes a high precision prediction algorithm for electromagnetic environment based on hybrid intelligent optimization. The algorithm combines particle swarm optimization algorithm and artificial colony algorithm to fit variogram, so as to break through the limitations of mathematical statistics optimization or single intelligent optimization algorithm in regional electromagnetic environment prediction. In addition, we modeled the regional electromagnetic environment from time, space, frequency and energy domain. Compared with other algorithms, the paper improves prediction accuracy and convergence speed.","PeriodicalId":194675,"journal":{"name":"2020 6th Global Electromagnetic Compatibility Conference (GEMCCON)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th Global Electromagnetic Compatibility Conference (GEMCCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEMCCON50979.2020.9456716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic environment signals are time-varying and non-stationary under harsh conditions, which cannot meet the basic requirements of ordinary Kriging interpolation method. Therefore, the paper proposes a high precision prediction algorithm for electromagnetic environment based on hybrid intelligent optimization. The algorithm combines particle swarm optimization algorithm and artificial colony algorithm to fit variogram, so as to break through the limitations of mathematical statistics optimization or single intelligent optimization algorithm in regional electromagnetic environment prediction. In addition, we modeled the regional electromagnetic environment from time, space, frequency and energy domain. Compared with other algorithms, the paper improves prediction accuracy and convergence speed.
基于混合智能优化的区域电磁环境多域感知算法
电磁环境信号在恶劣条件下具有时变和非平稳性,不能满足普通克里格插值方法的基本要求。为此,本文提出了一种基于混合智能优化的高精度电磁环境预测算法。该算法结合粒子群优化算法和人工群体算法对变异函数进行拟合,突破了数理统计优化或单一智能优化算法在区域电磁环境预测中的局限性。此外,从时间、空间、频率和能量域对区域电磁环境进行了建模。与其他算法相比,提高了预测精度和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信