A Novel Hierarchical Model-Based Frame Rate Up-Conversion via Spatio-temporal Conditional Random Fields

M. Shafiee, Z. Azimifar, A. Wong, P. Fieguth
{"title":"A Novel Hierarchical Model-Based Frame Rate Up-Conversion via Spatio-temporal Conditional Random Fields","authors":"M. Shafiee, Z. Azimifar, A. Wong, P. Fieguth","doi":"10.1109/ISM.2011.44","DOIUrl":null,"url":null,"abstract":"In this paper, a hierarchical model-based approach to frame rate-up conversion is presented. Given a sequence of consecutive video frames, a Spatio-Temporal Conditional Random Field (ST-CRF) is trained to capture both the motion and shape characteristics of objects within consecutive frames. A hierarchical tree is then constructed via hierarchical segmentation that sub-divides frames into regions based on color intensity and regional velocity. A hierarchical sampling approach is then introduced to construct new intermediate frames between adjacent video frames, where estimated intermediate frames are constructed at each level of a hierarchical tree constructed such that the probability of the ST-CRF is maximized. Preliminary results using videos with different motion characteristics show that the proposed approach has potential for producing intermediate frames with high visual quality.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a hierarchical model-based approach to frame rate-up conversion is presented. Given a sequence of consecutive video frames, a Spatio-Temporal Conditional Random Field (ST-CRF) is trained to capture both the motion and shape characteristics of objects within consecutive frames. A hierarchical tree is then constructed via hierarchical segmentation that sub-divides frames into regions based on color intensity and regional velocity. A hierarchical sampling approach is then introduced to construct new intermediate frames between adjacent video frames, where estimated intermediate frames are constructed at each level of a hierarchical tree constructed such that the probability of the ST-CRF is maximized. Preliminary results using videos with different motion characteristics show that the proposed approach has potential for producing intermediate frames with high visual quality.
一种基于分层模型的时空条件随机场帧率上转换方法
本文提出了一种基于层次模型的帧速率转换方法。给定连续视频帧序列,训练时空条件随机场(ST-CRF)来捕获连续帧内物体的运动和形状特征。然后通过分层分割构建层次树,根据颜色强度和区域速度将帧细分为区域。然后,引入分层采样方法在相邻视频帧之间构建新的中间帧,其中在构建的分层树的每个级别构建估计的中间帧,从而使ST-CRF的概率最大化。使用具有不同运动特征的视频的初步结果表明,该方法具有产生高视觉质量的中间帧的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信