Writer recognition by characters, words and sentences

Martin Gehrke, K. Steinke, Robert Dzido
{"title":"Writer recognition by characters, words and sentences","authors":"Martin Gehrke, K. Steinke, Robert Dzido","doi":"10.1109/CCST.2009.5335523","DOIUrl":null,"url":null,"abstract":"The methods developed in the research project “Herbar Digital” are to help plant taxonomists to master the great amount of material of about 3.5 million dried plants on paper sheets belonging to the Botanic Museum Berlin in Germany. Frequently the collector of the plant is unknown. So a procedure had to be developed in order to determine the writer of the handwriting on the sheet. In the present work the static character is transformed into a dynamic form. This is done with the model of an inert ball which is rolled through the written character. During this off-line writer recognition, different mathematical procedures are used such as the reproduction of the write line of individual characters by Legendre polynomials. When only one character is used, a recognition rate of about 40% is obtained. By combining multiple characters, the recognition rate rises considerably and reaches 98.7% with 13 characters and 93 writers (chosen randomly from the international IAMdatabase [3]). Another approach tries to identify the writer by handwritten words. The word is cut out and transformed into a 6-dimensional time series and compared e.g. by means of DTW-methods. A global statistical approach using the whole handwritten sentences results in a similar recognition rate of more than 98%. By combining the methods, a recognition rate of 99.5% is achieved.","PeriodicalId":117285,"journal":{"name":"43rd Annual 2009 International Carnahan Conference on Security Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"43rd Annual 2009 International Carnahan Conference on Security Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2009.5335523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The methods developed in the research project “Herbar Digital” are to help plant taxonomists to master the great amount of material of about 3.5 million dried plants on paper sheets belonging to the Botanic Museum Berlin in Germany. Frequently the collector of the plant is unknown. So a procedure had to be developed in order to determine the writer of the handwriting on the sheet. In the present work the static character is transformed into a dynamic form. This is done with the model of an inert ball which is rolled through the written character. During this off-line writer recognition, different mathematical procedures are used such as the reproduction of the write line of individual characters by Legendre polynomials. When only one character is used, a recognition rate of about 40% is obtained. By combining multiple characters, the recognition rate rises considerably and reaches 98.7% with 13 characters and 93 writers (chosen randomly from the international IAMdatabase [3]). Another approach tries to identify the writer by handwritten words. The word is cut out and transformed into a 6-dimensional time series and compared e.g. by means of DTW-methods. A global statistical approach using the whole handwritten sentences results in a similar recognition rate of more than 98%. By combining the methods, a recognition rate of 99.5% is achieved.
作者通过字符、单词和句子识别
在“草本数字化”研究项目中开发的方法是帮助植物分类学家掌握属于德国柏林植物博物馆的大约350万份纸上干燥植物的大量材料。通常,植物的收集者是未知的。因此,必须开发一种程序来确定纸上笔迹的作者。在这部作品中,静态的特征被转化为动态的形式。这是用一个惰性球的模型来完成的,它通过文字滚动。在这种离线写作者识别过程中,使用了不同的数学过程,例如用勒让德多项式复制单个字符的写作者行。当仅使用一个字符时,识别率约为40%。通过多字符组合,识别率大幅提高,13个字符,93个写作者(从国际iam库中随机抽取[3]),识别率达到98.7%。另一种方法是通过手写的文字来识别作者。将单词剪切并转换为6维时间序列,并通过dtw方法进行比较。使用整个手写句子的全球统计方法的识别率超过98%。该方法的识别率达到99.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信