Registration and integration of multisensor data for photorealistic scene reconstruction

Faysal Boughorbal, D. Page, C. Dumont, M. Abidi
{"title":"Registration and integration of multisensor data for photorealistic scene reconstruction","authors":"Faysal Boughorbal, D. Page, C. Dumont, M. Abidi","doi":"10.1117/12.384860","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method for automatically registering a 3D range image and a 2D color image using the (chi) 2-similarity metric. The goal of this registration is to allow the reconstruction of a scene using multi-sensor information. Traditional registration algorithms use invariant image features to drive the registration process. This approach limits the applicability to multi-modal data since features of interest may not appear in each modality. However, the (chi) 2-similarity metric is an intensity- based approach that has interesting multi-modal characteristics. We explore this metric as a mechanism to govern the registration search. Using range data from a Perceptron laser camera and color data form a Kodak digital camera, we present result using this automatic registration with the (chi) 2-similarity metric.","PeriodicalId":354140,"journal":{"name":"Applied Imaging Pattern Recognition","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Imaging Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.384860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we present a method for automatically registering a 3D range image and a 2D color image using the (chi) 2-similarity metric. The goal of this registration is to allow the reconstruction of a scene using multi-sensor information. Traditional registration algorithms use invariant image features to drive the registration process. This approach limits the applicability to multi-modal data since features of interest may not appear in each modality. However, the (chi) 2-similarity metric is an intensity- based approach that has interesting multi-modal characteristics. We explore this metric as a mechanism to govern the registration search. Using range data from a Perceptron laser camera and color data form a Kodak digital camera, we present result using this automatic registration with the (chi) 2-similarity metric.
面向逼真场景重建的多传感器数据配准与集成
在本文中,我们提出了一种使用(chi) 2-相似度度量自动配准3D范围图像和2D彩色图像的方法。这种配准的目标是允许使用多传感器信息重建场景。传统的配准算法使用不变的图像特征来驱动配准过程。这种方法限制了对多模态数据的适用性,因为感兴趣的特征可能不会出现在每个模态中。然而,(chi) 2相似度度量是一种基于强度的方法,具有有趣的多模态特征。我们将这个指标作为一种管理注册搜索的机制。使用来自感知器激光相机的距离数据和柯达数码相机的颜色数据,我们使用这种与(chi) 2相似度度量的自动配准来呈现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信