UApredictor: Urban Anomaly Prediction from Spatial-Temporal Data using Graph Transformer Neural Network

Bhumika, D. Das
{"title":"UApredictor: Urban Anomaly Prediction from Spatial-Temporal Data using Graph Transformer Neural Network","authors":"Bhumika, D. Das","doi":"10.1109/IJCNN55064.2022.9892885","DOIUrl":null,"url":null,"abstract":"Urban anomalies are abnormal events such as a blocked driveway, illegal parking, noise, crime, crowd gathering, etc. affect people and policy managers drastically if not handled in time. Prediction of these anomalies in the early stages is critical for public safety and mitigation of economic losses. However, predicting urban anomalies has various challenges like complex spatio-temporal relationships, dynamic nature, and data sparsity. This paper proposes a novel end-to-end deep learning based framework, i.e., UApredictor that utilizes stacked spatial-temporal-interaction block to predict urban anomaly from multivariate time-series data. We model the problem using an attribute graph, where we represent city regions as nodes to capture inter region spatial information using a spatial transformer. Further, to capture temporal correlation, we utilize a temporal transformer, and the interaction module retains complex interaction between spatio-temporal dimensions. Besides, the attention layer is added on the top of the spatial-temporal-interaction block that captures important information for predicting urban anomaly. We use real-world NYC-Urban Anomaly, NYC-Taxi, NYC-POI, NYC-Road Network, NYC-Demographic, and NYC-Weather datasets of New York city to evaluate the urban anomaly prediction framework. The results show that our proposed framework predicts better in terms of F-measure, macro-F1, and micro-F1 than baseline and state-of-the-art models.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Urban anomalies are abnormal events such as a blocked driveway, illegal parking, noise, crime, crowd gathering, etc. affect people and policy managers drastically if not handled in time. Prediction of these anomalies in the early stages is critical for public safety and mitigation of economic losses. However, predicting urban anomalies has various challenges like complex spatio-temporal relationships, dynamic nature, and data sparsity. This paper proposes a novel end-to-end deep learning based framework, i.e., UApredictor that utilizes stacked spatial-temporal-interaction block to predict urban anomaly from multivariate time-series data. We model the problem using an attribute graph, where we represent city regions as nodes to capture inter region spatial information using a spatial transformer. Further, to capture temporal correlation, we utilize a temporal transformer, and the interaction module retains complex interaction between spatio-temporal dimensions. Besides, the attention layer is added on the top of the spatial-temporal-interaction block that captures important information for predicting urban anomaly. We use real-world NYC-Urban Anomaly, NYC-Taxi, NYC-POI, NYC-Road Network, NYC-Demographic, and NYC-Weather datasets of New York city to evaluate the urban anomaly prediction framework. The results show that our proposed framework predicts better in terms of F-measure, macro-F1, and micro-F1 than baseline and state-of-the-art models.
upredictor:基于图转换神经网络的时空数据城市异常预测
城市异常是指车道堵塞、违章停车、噪音、犯罪、人群聚集等异常事件,如果不及时处理,会对人们和政策管理者造成巨大影响。在早期阶段预测这些异常情况对公共安全和减轻经济损失至关重要。然而,城市异常预测面临着复杂的时空关系、动态性和数据稀疏性等诸多挑战。本文提出了一种基于端到端的深度学习框架upredict,该框架利用堆叠时空交互块从多元时间序列数据中预测城市异常。我们使用属性图对问题进行建模,其中我们将城市区域表示为节点,以使用空间转换器捕获区域间的空间信息。此外,为了捕获时间相关性,我们使用了一个时间转换器,交互模块保留了时空维度之间的复杂交互。此外,在时空交互块的基础上增加了关注层,获取城市异常预测的重要信息。我们使用纽约市真实的NYC-Urban Anomaly、NYC-Taxi、NYC-POI、NYC-Road Network、NYC-Demographic和NYC-Weather数据集来评估城市异常预测框架。结果表明,我们提出的框架在F-measure、宏观f1和微观f1方面的预测优于基线和最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信