Segmenting Brain Tumor with an Improved U-Net Architecture

Der Sheng Tan, Wei Qiang Tam, H. Nisar, K. Yeap
{"title":"Segmenting Brain Tumor with an Improved U-Net Architecture","authors":"Der Sheng Tan, Wei Qiang Tam, H. Nisar, K. Yeap","doi":"10.1109/IECBES54088.2022.10079331","DOIUrl":null,"url":null,"abstract":"To aid in the clinical diagnosis of brain tumors, magnetic resonance imaging (MRI) is frequently used. The amount of time it takes to manually segment MRI images depends on the radiologist’s level of expertise. In this paper, a novel U-Net architecture for segmenting images of brain tumors is proposed. We have evaluated BraTS 2020 dataset with an improved U-Net structure with a dropout layer inserted between the encoder and decoder to reduce overfitting. By comparing with other U-Net architectures, our method has shown a promising result with dice coefficients 70.40%, 69.08% and 73.03%, for whole tumor (WT), tumor core (TC) and enhanced tumor (ET).","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To aid in the clinical diagnosis of brain tumors, magnetic resonance imaging (MRI) is frequently used. The amount of time it takes to manually segment MRI images depends on the radiologist’s level of expertise. In this paper, a novel U-Net architecture for segmenting images of brain tumors is proposed. We have evaluated BraTS 2020 dataset with an improved U-Net structure with a dropout layer inserted between the encoder and decoder to reduce overfitting. By comparing with other U-Net architectures, our method has shown a promising result with dice coefficients 70.40%, 69.08% and 73.03%, for whole tumor (WT), tumor core (TC) and enhanced tumor (ET).
基于改进U-Net结构的脑肿瘤分割
为了帮助临床诊断脑肿瘤,磁共振成像(MRI)经常被使用。手动分割MRI图像所需的时间取决于放射科医生的专业水平。本文提出了一种新的用于脑肿瘤图像分割的U-Net结构。我们使用改进的U-Net结构对BraTS 2020数据集进行了评估,该结构在编码器和解码器之间插入了dropout层,以减少过拟合。通过与其他U-Net架构的比较,我们的方法在全肿瘤(WT)、肿瘤核心(TC)和增强肿瘤(ET)上的骰子系数分别为70.40%、69.08%和73.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信