Dat Le Quang, Dong Hoang Ngoc, Manisa Rangponsumrit, Phruettiphan Supalasate, Khanh Dong Ngo, Duy Hung Nguyen, Minh Dung Tran, Van Tam Ho, Chi Luong Van, Samad Ali, Sarjono Tasi Antoneus, O. H. Khan, Sing Kiet Hii
{"title":"Production Optimisation and Surface Network Debottlenecking Using an Integrated Asset Model for Vietnam Offshore Field Development","authors":"Dat Le Quang, Dong Hoang Ngoc, Manisa Rangponsumrit, Phruettiphan Supalasate, Khanh Dong Ngo, Duy Hung Nguyen, Minh Dung Tran, Van Tam Ho, Chi Luong Van, Samad Ali, Sarjono Tasi Antoneus, O. H. Khan, Sing Kiet Hii","doi":"10.2523/iptc-22883-ms","DOIUrl":null,"url":null,"abstract":"\n CNV field in offshore Vietnam is experiencing excessive surface back pressure due to extended production pipeline and increasing field gas-oil ratio (GOR), which not only constraints the production from existing wells but also creates a challenge in evaluating production gain from future development activities. Therefore, it is critical to properly account the back pressure effect to generate a reliable long term production forecast for further investment decision.\n This paper describes the details of integrating subsurface dynamic reservoir simulation model with surface network simulation model to holistically assess the impact of back pressure. The conventional method of using standalone dynamic simulation model is compared against the integrated model. The well control mode in the reservoir model is updated with the response of the network model, which consist of wells, topside piping, facility equipment and export pipelines. With this approach, the surface pressure constraints and responses will be captured, and the reservoir, well and network performance will be impacted accordingly. A unified field management is designed using an advanced orchestration engine to control the well operating conditions, schedule well activities and activation of equipment in the operational cycle.\n Thorough assessment can be performed with the inclusion of accounting interactions between reservoir and network parameters. This integrated modelling workflow allows multiple domains of reservoir engineering, production engineering and engineering contractors to collaborate and achieve a better understanding of the impact of surface back pressure by producing a representative forecast of production profile.\n To address the back pressure problem in the current facility, debottleneck the surface network and improve production was evaluated by installation of additional surface equipments such as booster pump and compressor. In general, the integrated model provides critical insights to the field development planning, evaluation for de-bottle necking surface system and production optimization.\n There is lack of publication on the successful usage of the integrated surface network with subsurface dynamic simulation as it is uncommon for this feature in conventional modelling workflows. This paper describes the successful case of the implementation of an integrated simulation modelling workflow to simulate long term surface back pressure effect, back pressure from additional production into the system, and benefits of new surface equipment installation. Highly efficient and accurate prediction tool was developed in the scope of this study.","PeriodicalId":153269,"journal":{"name":"Day 2 Thu, March 02, 2023","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, March 02, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22883-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
CNV field in offshore Vietnam is experiencing excessive surface back pressure due to extended production pipeline and increasing field gas-oil ratio (GOR), which not only constraints the production from existing wells but also creates a challenge in evaluating production gain from future development activities. Therefore, it is critical to properly account the back pressure effect to generate a reliable long term production forecast for further investment decision.
This paper describes the details of integrating subsurface dynamic reservoir simulation model with surface network simulation model to holistically assess the impact of back pressure. The conventional method of using standalone dynamic simulation model is compared against the integrated model. The well control mode in the reservoir model is updated with the response of the network model, which consist of wells, topside piping, facility equipment and export pipelines. With this approach, the surface pressure constraints and responses will be captured, and the reservoir, well and network performance will be impacted accordingly. A unified field management is designed using an advanced orchestration engine to control the well operating conditions, schedule well activities and activation of equipment in the operational cycle.
Thorough assessment can be performed with the inclusion of accounting interactions between reservoir and network parameters. This integrated modelling workflow allows multiple domains of reservoir engineering, production engineering and engineering contractors to collaborate and achieve a better understanding of the impact of surface back pressure by producing a representative forecast of production profile.
To address the back pressure problem in the current facility, debottleneck the surface network and improve production was evaluated by installation of additional surface equipments such as booster pump and compressor. In general, the integrated model provides critical insights to the field development planning, evaluation for de-bottle necking surface system and production optimization.
There is lack of publication on the successful usage of the integrated surface network with subsurface dynamic simulation as it is uncommon for this feature in conventional modelling workflows. This paper describes the successful case of the implementation of an integrated simulation modelling workflow to simulate long term surface back pressure effect, back pressure from additional production into the system, and benefits of new surface equipment installation. Highly efficient and accurate prediction tool was developed in the scope of this study.