New lower bounds on aperiodic crosscorrelation of binary codes

V. Levenshtein
{"title":"New lower bounds on aperiodic crosscorrelation of binary codes","authors":"V. Levenshtein","doi":"10.1109/ISIT.1998.709076","DOIUrl":null,"url":null,"abstract":"For the minimum aperiodic crosscorrelation /spl theta/(n,M) of binary codes of size M and length n over the alphabet {1,-1} it is known that the celebrated Welch (1974) bound /spl theta//sup 2/(n,M)/spl ges/((M-1)n/sup 2/)/(2Mn-M-1). In this paper the Welch bound is strengthened for all M/spl ges/4 and n/spl ges/2. In the asymptotic process when M tends to infinity as n/spl rarr//spl infin/, this strengthening gives the factor 2 as compared to the Welch bound and coincides with the corresponding asymptotic bound on the square of the minimum periodic crosscorrelation of binary codes (Sidelnikov 1971). Our purpose is to estimate the aperiodic crosscorrelation /spl theta/(C) of a code C in E/sup n/={1,-1}/sup n/ which is defined as follows: /spl theta/(C)=max|/spl theta/(x,y;l)| where the maximum is taken over all x=(x/sub 1/,...,x/sub n/)/spl isin/C, y=(y/sub 1/,...,y/sub n/)/spl isin/C, l=0,l,...n-1 such that l/spl ne/0 when x=y and /spl theta/(x,y;l)=/spl Sigma//sub j=1//sup n-l/x/sub j/y/sub j/+l.","PeriodicalId":133728,"journal":{"name":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1998.709076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

For the minimum aperiodic crosscorrelation /spl theta/(n,M) of binary codes of size M and length n over the alphabet {1,-1} it is known that the celebrated Welch (1974) bound /spl theta//sup 2/(n,M)/spl ges/((M-1)n/sup 2/)/(2Mn-M-1). In this paper the Welch bound is strengthened for all M/spl ges/4 and n/spl ges/2. In the asymptotic process when M tends to infinity as n/spl rarr//spl infin/, this strengthening gives the factor 2 as compared to the Welch bound and coincides with the corresponding asymptotic bound on the square of the minimum periodic crosscorrelation of binary codes (Sidelnikov 1971). Our purpose is to estimate the aperiodic crosscorrelation /spl theta/(C) of a code C in E/sup n/={1,-1}/sup n/ which is defined as follows: /spl theta/(C)=max|/spl theta/(x,y;l)| where the maximum is taken over all x=(x/sub 1/,...,x/sub n/)/spl isin/C, y=(y/sub 1/,...,y/sub n/)/spl isin/C, l=0,l,...n-1 such that l/spl ne/0 when x=y and /spl theta/(x,y;l)=/spl Sigma//sub j=1//sup n-l/x/sub j/y/sub j/+l.
二进位码非周期互关的新下界
对于字母{1,-1}上大小为M、长度为n的二进制码的最小非周期相互关系/spl theta/(n,M),已知著名的Welch(1974)界为/spl theta//sup 2/(n,M)/spl ges/((M-1)n/sup 2/)/(2Mn-M-1)。本文对所有M/spl级数/4和n/spl级数/2的Welch界进行了强化。在渐近过程中,当M趋于无穷为n/spl rarr//spl infin/时,这种增强给出了与Welch界相比的因子2,并且与相应的二进制码的最小周期互相关平方的渐近界相一致(Sidelnikov 1971)。我们的目的是估计代码C在E/sup n/={1,-1}/sup n/中的非周期互相关/spl theta/(C),其定义如下:/spl theta/(C)=max|/spl theta/(x,y;l)|其中最大值占据所有x=(x/下标1/,…,x/下标n/)/spl isin/C, y=(y/下标1/,…,y/sub n/)/spl isin/C, l=0,l,…n-1使得l/spl ne/0当x=y和/spl θ /(x,y;l)=/spl σ //下标j=1//sup n-l/x/下标j/y/下标j/+l。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信