EasySDM: An integrated and easy to use Spatial Data Mining platform

Leila Hamdad, Amine Abdaoui, Nabila Belattar, Mohamed Al Chikha
{"title":"EasySDM: An integrated and easy to use Spatial Data Mining platform","authors":"Leila Hamdad, Amine Abdaoui, Nabila Belattar, Mohamed Al Chikha","doi":"10.5220/0005615903940401","DOIUrl":null,"url":null,"abstract":"Spatial Data Mining allows users to extract implicit but valuable knowledge from spatial related data. Two main approaches have been used in the literature. The first one applies simple Data Mining algorithms after a spatial pre-processing step. While the second one consists of developing specific algorithms that considers the spatial relations inside the mining process. In this work, we first present a study of existing Spatial Data Mining tools according to the implemented tasks and specific characteristics. Then, we illustrate a new open source Spatial Data Mining platform (EasySDM) that integrates both approaches (pre-processing and dynamic mining). It proposes a set of algorithms belonging to clustering, classification and association rule mining tasks. Moreover and more importantly, it allows geographic visualization of both the data and the results. Either via an internal map display or using any external Geographic Information System.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005615903940401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial Data Mining allows users to extract implicit but valuable knowledge from spatial related data. Two main approaches have been used in the literature. The first one applies simple Data Mining algorithms after a spatial pre-processing step. While the second one consists of developing specific algorithms that considers the spatial relations inside the mining process. In this work, we first present a study of existing Spatial Data Mining tools according to the implemented tasks and specific characteristics. Then, we illustrate a new open source Spatial Data Mining platform (EasySDM) that integrates both approaches (pre-processing and dynamic mining). It proposes a set of algorithms belonging to clustering, classification and association rule mining tasks. Moreover and more importantly, it allows geographic visualization of both the data and the results. Either via an internal map display or using any external Geographic Information System.
EasySDM:一个集成且易于使用的空间数据挖掘平台
空间数据挖掘允许用户从空间相关数据中提取隐含但有价值的知识。文献中主要使用了两种方法。第一种是在空间预处理步骤之后应用简单的数据挖掘算法。而第二部分则包括开发特定的算法,该算法考虑了挖掘过程中的空间关系。在这项工作中,我们首先根据实现的任务和具体特点对现有的空间数据挖掘工具进行了研究。然后,我们展示了一个新的开源空间数据挖掘平台(EasySDM),它集成了两种方法(预处理和动态挖掘)。提出了一套属于聚类、分类和关联规则挖掘任务的算法。此外,更重要的是,它允许数据和结果的地理可视化。通过内部地图显示或使用任何外部地理信息系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信