Algebraic bivariant $K$-theory and Leavitt path algebras.

Guillermo Cortiñas, Diego Montero
{"title":"Algebraic bivariant $K$-theory and Leavitt path algebras.","authors":"Guillermo Cortiñas, Diego Montero","doi":"10.4171/JNCG/397","DOIUrl":null,"url":null,"abstract":"This article is the first of two where we investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras $L(E)$ and $L(F)$ of graphs $E$ and $F$ over a commutative ground ring $\\ell$. In this first article we consider Leavitt path algebras of general graphs over general ground rings; the second article will focus mostly on purely infinite simple unital Leavitt path algebras over a field. Bivariant algebraic $K$-theory $kk$ is the universal homology theory with the properties above; we prove a structure theorem for unital Leavitt path algebras in $kk$. We show that under very mild assumptions on $\\ell$, for a graph $E$ with finitely many vertices and reduced incidence matrix $A_E$, the structure of $L(E)$ depends only on the isomorphism classes of the cokernels of the matrix $I-A_E$ and of its transpose, which are respectively the $kk$ groups $KH^1(L(E))=kk_{-1}(L(E),\\ell)$ and $KH_0(L(E))=kk_0(\\ell,L(E))$. Hence if $L(E)$ and $L(F)$ are unital Leavitt path algebras such that $KH_0(L(E))\\cong KH_0(L(F))$ and $KH^1(L(E))\\cong KH^1(L(F))$ then no homology theory with the above properties can distinguish them. We also prove that for Leavitt path algebras, $kk$ has several properties similar to those that Kasparov's bivariant $K$-theory has for $C^*$-graph algebras, including analogues of the Universal coefficient and Kunneth theorems of Rosenberg and Schochet.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This article is the first of two where we investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras $L(E)$ and $L(F)$ of graphs $E$ and $F$ over a commutative ground ring $\ell$. In this first article we consider Leavitt path algebras of general graphs over general ground rings; the second article will focus mostly on purely infinite simple unital Leavitt path algebras over a field. Bivariant algebraic $K$-theory $kk$ is the universal homology theory with the properties above; we prove a structure theorem for unital Leavitt path algebras in $kk$. We show that under very mild assumptions on $\ell$, for a graph $E$ with finitely many vertices and reduced incidence matrix $A_E$, the structure of $L(E)$ depends only on the isomorphism classes of the cokernels of the matrix $I-A_E$ and of its transpose, which are respectively the $kk$ groups $KH^1(L(E))=kk_{-1}(L(E),\ell)$ and $KH_0(L(E))=kk_0(\ell,L(E))$. Hence if $L(E)$ and $L(F)$ are unital Leavitt path algebras such that $KH_0(L(E))\cong KH_0(L(F))$ and $KH^1(L(E))\cong KH^1(L(F))$ then no homology theory with the above properties can distinguish them. We also prove that for Leavitt path algebras, $kk$ has several properties similar to those that Kasparov's bivariant $K$-theory has for $C^*$-graph algebras, including analogues of the Universal coefficient and Kunneth theorems of Rosenberg and Schochet.
代数双变K理论与Leavitt路径代数。
本文是两篇文章中的第一篇,在这两篇文章中,我们研究了在交换地环上图$E$和图$F$的同伦不变、完备和矩阵稳定同伦理论在多大程度上帮助人们区分levitt路径代数$L(E)$和$L(F)$。在第一篇文章中,我们考虑一般地环上一般图的Leavitt路径代数;第二篇文章将主要关注域上的纯无限简单单莱维特路径代数。二元代数$K$-理论$kk$是具有上述性质的全称同调理论;证明了$kk$中一元莱维特路径代数的一个结构定理。我们证明了在$\ell$的非常温和的假设下,对于具有有限多个顶点和简化关联矩阵$A_E$的图$E$, $L(E)$的结构仅取决于矩阵$I-A_E$及其转置的核的同构类,它们分别是$kk$群$KH^1(L(E))=kk_{-1}(L(E),\ell)$和$KH_0(L(E))=kk_0(\ell,L(E))$。因此,如果$L(E)$和$L(F)$是一元莱维特路径代数,使得$KH_0(L(E))\cong KH_0(L(F))$和$KH^1(L(E))\cong KH^1(L(F))$,则没有具有上述性质的同调理论可以区分它们。我们还证明了对于Leavitt路径代数,$kk$具有与$C^*$图代数的Kasparov双变$K$-理论相似的几个性质,包括Rosenberg和Schochet的普适系数和Kunneth定理的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信