Lip reading using external viseme decoding

J. Peymanfard, M. R. Mohammadi, Hossein Zeinali, N. Mozayani
{"title":"Lip reading using external viseme decoding","authors":"J. Peymanfard, M. R. Mohammadi, Hossein Zeinali, N. Mozayani","doi":"10.1109/MVIP53647.2022.9738749","DOIUrl":null,"url":null,"abstract":"Lip-reading is the operation of recognizing speech from lip movements. This is a difficult task because the movements of the lips when pronouncing the words are similar for some of them. Viseme is used to describe lip movements during a conversation. This paper aims to show how to use external text data (for viseme-to-character mapping) by dividing video-to-character into two stages, namely converting video to viseme and then converting viseme to character by using separate models. Our proposed method improves word error rate by an absolute rate of 4% compared to the typical sequence to sequence lipreading model on the BBC-Oxford Lip Reading dataset (LRS2).","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Lip-reading is the operation of recognizing speech from lip movements. This is a difficult task because the movements of the lips when pronouncing the words are similar for some of them. Viseme is used to describe lip movements during a conversation. This paper aims to show how to use external text data (for viseme-to-character mapping) by dividing video-to-character into two stages, namely converting video to viseme and then converting viseme to character by using separate models. Our proposed method improves word error rate by an absolute rate of 4% compared to the typical sequence to sequence lipreading model on the BBC-Oxford Lip Reading dataset (LRS2).
唇读使用外部viseme解码
唇读是通过唇的运动来识别语言的操作。这是一项困难的任务,因为其中一些人在发音时嘴唇的动作是相似的。Viseme是用来形容谈话中嘴唇的动作。本文旨在通过将视频到字符分为两个阶段,即将视频转换为viseme,然后使用单独的模型将viseme转换为字符,来展示如何使用外部文本数据(用于viseme到字符的映射)。与BBC-Oxford唇读数据集(LRS2)上典型的序列对序列唇读模型相比,我们提出的方法将单词错误率提高了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信