{"title":"Hodge-Newton filtration for $p$-divisible groups with ramified endomorphism structure.","authors":"Andrea Marrama","doi":"10.25537/dm.2022v27.1805-1863","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{O}_K$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with perfect residue field. We prove the existence of the Hodge-Newton filtration for $p$-divisible groups over $\\mathcal{O}_K$ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of $\\mathbb{Q}_p$. The argument is based on the Harder-Narasimhan theory for finite flat group schemes over $\\mathcal{O}_K$. In particular, we describe a sufficient condition for the existence of a filtration of $p$-divisible groups over $\\mathcal{O}_K$ associated to a break point of the Harder-Narasimhan polygon.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25537/dm.2022v27.1805-1863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $\mathcal{O}_K$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with perfect residue field. We prove the existence of the Hodge-Newton filtration for $p$-divisible groups over $\mathcal{O}_K$ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of $\mathbb{Q}_p$. The argument is based on the Harder-Narasimhan theory for finite flat group schemes over $\mathcal{O}_K$. In particular, we describe a sufficient condition for the existence of a filtration of $p$-divisible groups over $\mathcal{O}_K$ associated to a break point of the Harder-Narasimhan polygon.