Hodge-Newton filtration for $p$-divisible groups with ramified endomorphism structure.

Andrea Marrama
{"title":"Hodge-Newton filtration for $p$-divisible groups with ramified endomorphism structure.","authors":"Andrea Marrama","doi":"10.25537/dm.2022v27.1805-1863","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{O}_K$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with perfect residue field. We prove the existence of the Hodge-Newton filtration for $p$-divisible groups over $\\mathcal{O}_K$ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of $\\mathbb{Q}_p$. The argument is based on the Harder-Narasimhan theory for finite flat group schemes over $\\mathcal{O}_K$. In particular, we describe a sufficient condition for the existence of a filtration of $p$-divisible groups over $\\mathcal{O}_K$ associated to a break point of the Harder-Narasimhan polygon.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25537/dm.2022v27.1805-1863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathcal{O}_K$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with perfect residue field. We prove the existence of the Hodge-Newton filtration for $p$-divisible groups over $\mathcal{O}_K$ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of $\mathbb{Q}_p$. The argument is based on the Harder-Narasimhan theory for finite flat group schemes over $\mathcal{O}_K$. In particular, we describe a sufficient condition for the existence of a filtration of $p$-divisible groups over $\mathcal{O}_K$ associated to a break point of the Harder-Narasimhan polygon.
具有分枝自同态结构的$p$可分群的Hodge-Newton滤波。
设$\mathcal{O}_K$是一个具有完全残差域的混合特征$(0,p)$的完全离散估值环。对于$\mathbb{Q}_p$的有限可能分支域扩展的整数环,我们用附加的自同态结构证明了$\mathbb{Q}_p$上$p$-可除群的hoge - newton过滤的存在性。该论证基于$\mathcal{O}_K$上有限平面群方案的Harder-Narasimhan理论。特别地,我们描述了与hard - narasimhan多边形的断点有关的$p$-可除群在$\mathcal{O}_K$上的过滤存在的一个充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信