Evaluating Different Graph Learning Techniques for Mental Task EEG Signal Classification

P. Mathur, Vijay Kumar Chakka
{"title":"Evaluating Different Graph Learning Techniques for Mental Task EEG Signal Classification","authors":"P. Mathur, Vijay Kumar Chakka","doi":"10.1109/INDICON52576.2021.9691598","DOIUrl":null,"url":null,"abstract":"Graph learning from the brain signals deals with capturing the changes in functional relationship between the brain regions during mental active and relaxed states. This paper investigates different graph learning techniques, namely geometry, signal similarity, and Graphical LASSO based methods for the classification of mental task from electroencephalogram (EEG) signals. Graph spectral energy based metric using Graph Signal Processing (GSP) technique is presented to classify mental active state from relaxed state. A binary KNN classifier is used to analyse each graph learning technique on publicly available Keirn and Aunon mental task EEG database. Performance of different graphs is then analysed and compared using classification Accuracy and F-Score.","PeriodicalId":106004,"journal":{"name":"2021 IEEE 18th India Council International Conference (INDICON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 18th India Council International Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON52576.2021.9691598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph learning from the brain signals deals with capturing the changes in functional relationship between the brain regions during mental active and relaxed states. This paper investigates different graph learning techniques, namely geometry, signal similarity, and Graphical LASSO based methods for the classification of mental task from electroencephalogram (EEG) signals. Graph spectral energy based metric using Graph Signal Processing (GSP) technique is presented to classify mental active state from relaxed state. A binary KNN classifier is used to analyse each graph learning technique on publicly available Keirn and Aunon mental task EEG database. Performance of different graphs is then analysed and compared using classification Accuracy and F-Score.
评价不同图学习技术在脑任务脑电信号分类中的应用
从大脑信号中进行图形学习是为了捕捉在精神活动和放松状态下大脑区域之间功能关系的变化。本文研究了不同的图学习技术,即几何、信号相似度和基于图形LASSO的方法,用于从脑电图(EEG)信号中分类心理任务。利用图信号处理(GSP)技术,提出了基于图谱能量度量的精神活动状态和精神放松状态的分类方法。利用二值KNN分类器对公开的Keirn和Aunon心理任务脑电图数据库上的每种图学习技术进行分析。然后使用分类精度和F-Score对不同图的性能进行分析和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信