4D light field segmentation with spatial and angular consistencies

H. Mihara, Takuya Funatomi, Kenichiro Tanaka, Hiroyuki Kubo, Y. Mukaigawa, H. Nagahara
{"title":"4D light field segmentation with spatial and angular consistencies","authors":"H. Mihara, Takuya Funatomi, Kenichiro Tanaka, Hiroyuki Kubo, Y. Mukaigawa, H. Nagahara","doi":"10.1109/ICCPHOT.2016.7492872","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a supervised four-dimensional (4D) light field segmentation method that uses a graph-cut algorithm. Since 4D light field data has implicit depth information and contains redundancy, it differs from simple 4D hyper-volume. In order to preserve redundancy, we define two neighboring ray types (spatial and angular) in light field data. To obtain higher segmentation accuracy, we also design a learning-based likelihood, called objectness, which utilizes appearance and disparity cues. We show the effectiveness of our method via numerical evaluation and some light field editing applications using both synthetic and real-world light fields.","PeriodicalId":156635,"journal":{"name":"2016 IEEE International Conference on Computational Photography (ICCP)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPHOT.2016.7492872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, we describe a supervised four-dimensional (4D) light field segmentation method that uses a graph-cut algorithm. Since 4D light field data has implicit depth information and contains redundancy, it differs from simple 4D hyper-volume. In order to preserve redundancy, we define two neighboring ray types (spatial and angular) in light field data. To obtain higher segmentation accuracy, we also design a learning-based likelihood, called objectness, which utilizes appearance and disparity cues. We show the effectiveness of our method via numerical evaluation and some light field editing applications using both synthetic and real-world light fields.
具有空间和角度一致性的四维光场分割
本文描述了一种基于图切算法的监督四维光场分割方法。由于四维光场数据具有隐式深度信息和冗余性,不同于简单的四维超体。为了保持冗余,我们在光场数据中定义了两种相邻的射线类型(空间和角)。为了获得更高的分割精度,我们还设计了一种基于学习的似然,称为对象性,它利用了外观和差异线索。我们通过数值评估和一些使用合成光场和真实光场的光场编辑应用来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信