Families of Butterfly Counting Algorithms for Bipartite Graphs

Jay A. Acosta, Tze Meng Low, D. Parikh
{"title":"Families of Butterfly Counting Algorithms for Bipartite Graphs","authors":"Jay A. Acosta, Tze Meng Low, D. Parikh","doi":"10.1109/IPDPSW55747.2022.00060","DOIUrl":null,"url":null,"abstract":"Butterflies are an important motif found in bipartite graphs that provide a structural way for finding dense regions within the graph. Beyond counting butterflies and enumerating them, other metrics and peeling for bipartite graphs are designed around counting butterfly motifs. The importance of counting butterflies has led to many works on efficient implementations for butterfly counting, given certain situational or hardware constraints. However, most algorithms are based on first counting the building block of the butterfly motif, and from that calculating the total possible number of butterflies in the graph. In this paper, using a linear algebra approach, we show that many provably correct algorithms for counting butterflies can be systematically derived. Moreover, we show how this formulation facilitates butterfly peeling algorithms that find the k-tip and k-wing subgraphs within a bipartite graph.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Butterflies are an important motif found in bipartite graphs that provide a structural way for finding dense regions within the graph. Beyond counting butterflies and enumerating them, other metrics and peeling for bipartite graphs are designed around counting butterfly motifs. The importance of counting butterflies has led to many works on efficient implementations for butterfly counting, given certain situational or hardware constraints. However, most algorithms are based on first counting the building block of the butterfly motif, and from that calculating the total possible number of butterflies in the graph. In this paper, using a linear algebra approach, we show that many provably correct algorithms for counting butterflies can be systematically derived. Moreover, we show how this formulation facilitates butterfly peeling algorithms that find the k-tip and k-wing subgraphs within a bipartite graph.
二部图的蝴蝶计数算法族
蝴蝶是在二部图中发现的一个重要的基序,它提供了在图中寻找密集区域的结构方法。除了计数蝴蝶和枚举它们之外,其他度量和二部图的剥离都是围绕计数蝴蝶图案设计的。考虑到蝴蝶计数的重要性,在给定某些情境或硬件约束的情况下,需要对蝴蝶计数的高效实现进行大量研究。然而,大多数算法都是基于首先计算蝴蝶图案的构建块,并以此计算图中蝴蝶的可能总数。在本文中,我们使用线性代数方法,证明了许多可证明正确的蝴蝶计数算法可以系统地导出。此外,我们展示了该公式如何促进蝴蝶剥离算法在二部图中找到k尖和k翼子图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信