Detection of Cell Nuclei using LadderNet

Ren Ando, Y. Iwahori, S. Fukui, Aili Wang, M. Bhuyan, T. Iwamoto, J. Ueda
{"title":"Detection of Cell Nuclei using LadderNet","authors":"Ren Ando, Y. Iwahori, S. Fukui, Aili Wang, M. Bhuyan, T. Iwamoto, J. Ueda","doi":"10.1109/IIAI-AAI50415.2020.00099","DOIUrl":null,"url":null,"abstract":"Cytology which directly examines cells in the early detection of cancer plays an important role but this diagnosis depends on the experience and technology of a pathologist. The problem is that it takes time and the objectivity is poor. An automatic diagnosis system for pathologically diagnosing cancer is necessary to solve these problems. To classify cells into benign or malignant automatically, it is important to detect the cell nucleus from the cell image in advance. This paper proposes a new approach to detect cell nuclei for automatically using LadderNet which is a recent extension model of U-Net used in the Deep Learning Approach.","PeriodicalId":188870,"journal":{"name":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI50415.2020.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cytology which directly examines cells in the early detection of cancer plays an important role but this diagnosis depends on the experience and technology of a pathologist. The problem is that it takes time and the objectivity is poor. An automatic diagnosis system for pathologically diagnosing cancer is necessary to solve these problems. To classify cells into benign or malignant automatically, it is important to detect the cell nucleus from the cell image in advance. This paper proposes a new approach to detect cell nuclei for automatically using LadderNet which is a recent extension model of U-Net used in the Deep Learning Approach.
用梯子网检测细胞核
直接检查细胞的细胞学在癌症的早期发现中起着重要作用,但这种诊断依赖于病理学家的经验和技术。问题是,这需要时间,而且客观性很差。为了解决这些问题,有必要开发一种用于肿瘤病理诊断的自动诊断系统。为了对细胞进行良性或恶性的自动分类,提前从细胞图像中检测出细胞核是很重要的。本文提出了一种利用LadderNet自动检测细胞核的新方法,LadderNet是深度学习方法中U-Net的最新扩展模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信